Classification of non-alcoholic beer based on aftertaste sensory evaluation by chemometric tools

回味 线性判别分析 人工智能 主成分分析 人工神经网络 模式识别(心理学) 计算机科学 机器学习 数学 食品科学 化学 品味
作者
Mahdi Ghasemi-Varnamkhasti,Seyed Saeid Mohtasebi,Marı́a Luz Rodrı́guez-Méndez,Jesús Lozano,Seyed Hadi Razavi,Hojat Ahmadi,Constantin Apetrei
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:39 (4): 4315-4327 被引量:46
标识
DOI:10.1016/j.eswa.2011.09.101
摘要

Sensory evaluation is the application of knowledge and skills derived from several different scientific and technical disciplines, physiology, chemistry, mathematics and statistics, human behavior, and knowledge about product preparation practices. This research was aimed to evaluate aftertaste sensory attributes of commercial non-alcoholic beer brands (P1, P2, P3, P4, P5, P6, P7) by several chemometric tools. These attributes were bitter, sour, sweet, fruity, liquorice, artificial, body, intensity and duration. The results showed that the data are in a good consistency. Therefore, the brands were statistically classified in several categories. Linear techniques as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) were performed over the data that revealed all types of beer are well separated except a partial overlapping between zones corresponding to P4, P6 and P7. In this research, for the confirmation of the groups observed in PCA and in order to calculate the errors in calibration and in validation, PLS-DA technique was used. Based on the quantitative data of PLS-DA, the classification accuracy values were ranked within 49-86%. Moreover, it was found that the classification accuracy of LDA was much better than PCA. It shows that this trained sensory panel can discriminate among the samples except an overlapping between two types of beer. Also, two types of artificial networks were used: Probabilistic Neural Networks (PNN) with Radial Basis Functions (RBF) and FeedForward Networks with Back Propagation (BP) learning method. The highest classification success rate (correct predicted number over total number of measurements) of about 97% was obtained for RBF followed by 94% for BP. The results obtained in this study could be used as a reference for electronic nose and electronic tongue in beer quality control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
swordshine完成签到,获得积分10
2秒前
郑雅柔完成签到 ,获得积分0
2秒前
jixuchance完成签到,获得积分10
2秒前
难搞哦发布了新的文献求助10
3秒前
难搞哦发布了新的文献求助10
4秒前
难搞哦发布了新的文献求助10
4秒前
难搞哦发布了新的文献求助10
4秒前
5秒前
难搞哦发布了新的文献求助10
5秒前
健忘雁易完成签到 ,获得积分10
5秒前
5秒前
难搞哦发布了新的文献求助10
6秒前
七人七发布了新的文献求助10
9秒前
瘦瘦乌龟完成签到 ,获得积分10
10秒前
123完成签到 ,获得积分10
14秒前
QIANGYI完成签到 ,获得积分10
15秒前
马宇航完成签到 ,获得积分10
17秒前
发个15分的完成签到 ,获得积分10
25秒前
26秒前
七人七发布了新的文献求助10
28秒前
古炮完成签到 ,获得积分10
33秒前
木之尹完成签到 ,获得积分10
33秒前
AiQi完成签到 ,获得积分10
35秒前
韩钰小宝完成签到 ,获得积分10
35秒前
和谐的夏岚完成签到 ,获得积分10
41秒前
光亮梦山完成签到 ,获得积分10
42秒前
七人七发布了新的文献求助10
42秒前
量子星尘发布了新的文献求助10
46秒前
mysilicon完成签到,获得积分10
46秒前
ng完成签到 ,获得积分10
50秒前
00完成签到 ,获得积分10
53秒前
甜蜜的白桃完成签到 ,获得积分10
56秒前
七人七发布了新的文献求助10
57秒前
如意的馒头完成签到 ,获得积分10
1分钟前
爆米花应助七人七采纳,获得10
1分钟前
Driscoll完成签到 ,获得积分10
1分钟前
lmplzzp完成签到,获得积分10
1分钟前
拼搏问薇完成签到 ,获得积分10
1分钟前
现实的大白完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008687
求助须知:如何正确求助?哪些是违规求助? 3548349
关于积分的说明 11298805
捐赠科研通 3283020
什么是DOI,文献DOI怎么找? 1810290
邀请新用户注册赠送积分活动 885976
科研通“疑难数据库(出版商)”最低求助积分说明 811218