Classification of non-alcoholic beer based on aftertaste sensory evaluation by chemometric tools

回味 线性判别分析 人工智能 主成分分析 人工神经网络 模式识别(心理学) 计算机科学 机器学习 数学 食品科学 化学 品味
作者
Mahdi Ghasemi-Varnamkhasti,Seyed Saeid Mohtasebi,Marı́a Luz Rodrı́guez-Méndez,Jesús Lozano,Seyed Hadi Razavi,Hojat Ahmadi,Constantin Apetrei
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:39 (4): 4315-4327 被引量:46
标识
DOI:10.1016/j.eswa.2011.09.101
摘要

Sensory evaluation is the application of knowledge and skills derived from several different scientific and technical disciplines, physiology, chemistry, mathematics and statistics, human behavior, and knowledge about product preparation practices. This research was aimed to evaluate aftertaste sensory attributes of commercial non-alcoholic beer brands (P1, P2, P3, P4, P5, P6, P7) by several chemometric tools. These attributes were bitter, sour, sweet, fruity, liquorice, artificial, body, intensity and duration. The results showed that the data are in a good consistency. Therefore, the brands were statistically classified in several categories. Linear techniques as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) were performed over the data that revealed all types of beer are well separated except a partial overlapping between zones corresponding to P4, P6 and P7. In this research, for the confirmation of the groups observed in PCA and in order to calculate the errors in calibration and in validation, PLS-DA technique was used. Based on the quantitative data of PLS-DA, the classification accuracy values were ranked within 49-86%. Moreover, it was found that the classification accuracy of LDA was much better than PCA. It shows that this trained sensory panel can discriminate among the samples except an overlapping between two types of beer. Also, two types of artificial networks were used: Probabilistic Neural Networks (PNN) with Radial Basis Functions (RBF) and FeedForward Networks with Back Propagation (BP) learning method. The highest classification success rate (correct predicted number over total number of measurements) of about 97% was obtained for RBF followed by 94% for BP. The results obtained in this study could be used as a reference for electronic nose and electronic tongue in beer quality control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
清脆遥发布了新的文献求助10
5秒前
研友_VZG7GZ应助大清采纳,获得10
5秒前
Orange应助lupeichun采纳,获得10
5秒前
王小茹发布了新的文献求助10
10秒前
居居子完成签到,获得积分10
11秒前
13秒前
酷波er应助炙热晓露采纳,获得10
13秒前
喜悦熠彤发布了新的文献求助10
14秒前
jason发布了新的文献求助10
15秒前
Lucas应助十一采纳,获得10
16秒前
17秒前
314gjj发布了新的文献求助10
19秒前
冷公子发布了新的文献求助10
19秒前
lalala发布了新的文献求助10
22秒前
22秒前
彭于晏应助Mins采纳,获得10
22秒前
23秒前
Mr.Young完成签到,获得积分10
24秒前
ykh完成签到,获得积分10
24秒前
细心帽子完成签到 ,获得积分10
25秒前
28秒前
开放的灵凡完成签到,获得积分10
28秒前
29秒前
炙热晓露发布了新的文献求助10
29秒前
le完成签到,获得积分10
31秒前
善良海云发布了新的文献求助10
31秒前
32秒前
314gjj完成签到,获得积分10
33秒前
逃亡的小狗完成签到,获得积分10
35秒前
用户5063899完成签到,获得积分10
36秒前
夏青荷发布了新的文献求助10
36秒前
852应助热心梦易采纳,获得10
36秒前
38秒前
38秒前
lalala发布了新的文献求助10
39秒前
40秒前
40秒前
坚定的如凡完成签到,获得积分10
40秒前
vitamin发布了新的文献求助10
40秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228046
求助须知:如何正确求助?哪些是违规求助? 2875959
关于积分的说明 8193272
捐赠科研通 2543114
什么是DOI,文献DOI怎么找? 1373502
科研通“疑难数据库(出版商)”最低求助积分说明 646781
邀请新用户注册赠送积分活动 621276