DNA
分子动力学
突变体
生物物理学
螺旋(腹足类)
序列(生物学)
碱基对
核苷酸
生物
计算生物学
遗传学
化学
基因
计算化学
生态学
蜗牛
作者
Swarnalatha Y. Reddy,Satoshi Obika,Thomas C. Bruice
标识
DOI:10.1073/pnas.1936251100
摘要
Molecular dynamics studies have been performed for 3.5 ns on the ETS domain of Ets-1 transcription factor bound to the 14-bp DNA, d(AGTGCCGGAAATGT), comprising the core sequence of high-affinity (GGAA), ETS-GGAA. In like manner, molecular dynamics simulations have been carried out for 3.9 ns on the mutant low-affinity core sequence, GGAG (ETS-GGAG). Analyses of the DNA backbone of ETS-GGAG show conformational interconversions from BI to BII substates. Also, crank shaft motions are noticed at the mutated nucleotide base pair step after 1500 ps of dynamics. The corresponding nucleotide of ETS-GGAA is characteristic of a BI conformation and no crank shaft motions are observed. The single mutation of ETS-GGAA to ETS-GGAG also results in variations of helical parameters and solvent-accessible surface area around the major and minor grooves of the DNA. The presence of water contacts during the entire simulation proximal to the fourth base pair step of core DNA sequence is a characteristic feature of ETS-GGAA. Such waters are more mobile in ETS-GGAG at 100 ps and distant after 1500 ps. Anticorrelated motions between certain amino acids of Ets-1 protein are predominant in ETS-GGAA but less so or absent in the mutant. These motions are reflected in the flexibility of amino acid residues of the protein backbone. We consider that these conformational features and water contacts are involved in stabilizing the hydrogen bond interactions between helix-3 residues of Ets-1 and DNA during the transcription process.
科研通智能强力驱动
Strongly Powered by AbleSci AI