A Partial Least Squares Latent Variable Modeling Approach for Measuring Interaction Effects: Results from a Monte Carlo Simulation Study and an Electronic-Mail Emotion/Adoption Study

蒙特卡罗方法 潜变量 计量经济学 权变理论 计算机科学 集合(抽象数据类型) 列联表 变量 意外事故 变量(数学) 回归分析 统计 数学 人工智能 机器学习 数学分析 哲学 知识管理 语言学 程序设计语言
作者
Wynne W. Chin,Barbara L. Marcolin,Peter R. Newsted
出处
期刊:Information Systems Research [Institute for Operations Research and the Management Sciences]
卷期号:14 (2): 189-217 被引量:5065
标识
DOI:10.1287/isre.14.2.189.16018
摘要

The ability to detect and accurately estimate the strength of interaction effects are critical issues that are fundamental to social science research in general and IS research in particular. Within the IS discipline, a significant percentage of research has been devoted to examining the conditions and contexts under which relationships may vary, often under the general umbrella of contingency theory (cf. McKeen et al. 1994, Weill and Olson 1989). In our survey of such studies, the majority failed to either detect or provide an estimate of the effect size. In cases where effect sizes are estimated, the numbers are generally small. These results have led some researchers to question both the usefulness of contingency theory and the need to detect interaction effects (e.g., Weill and Olson 1989). This paper addresses this issue by providing a new latent variable modeling approach that can give more accurate estimates of interaction effects by accounting for the measurement error that attenuates the estimated relationships. The capacity of this approach at recovering true effects in comparison to summated regression is demonstrated in a Monte Carlo study that creates a simulated data set in which the underlying true effects are known. Analysis of a second, empirical data set is included to demonstrate the technique's use within IS theory. In this second analysis, substantial direct and interaction effects of enjoyment on electronic-mail adoption are shown to exist.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助练习者采纳,获得10
刚刚
大气糖豆完成签到 ,获得积分10
1秒前
鱼仔发布了新的文献求助10
2秒前
setfgrew完成签到,获得积分20
3秒前
方静怡完成签到,获得积分10
3秒前
3秒前
开心豁发布了新的文献求助100
3秒前
小马哥西北孤狼完成签到,获得积分10
5秒前
wtjjjjjj完成签到 ,获得积分10
6秒前
7秒前
7秒前
Monica完成签到 ,获得积分10
8秒前
鱼仔完成签到,获得积分10
8秒前
斯文败类应助JenniferW采纳,获得10
8秒前
8秒前
bkagyin应助Avicii采纳,获得13
8秒前
cocolu应助杨文彬采纳,获得10
9秒前
9秒前
10秒前
11秒前
11秒前
练习者发布了新的文献求助10
12秒前
MIST完成签到,获得积分10
14秒前
15秒前
开心豁完成签到,获得积分10
15秒前
22222发布了新的文献求助20
17秒前
18秒前
Jasper应助张张采纳,获得10
18秒前
cxlhzq完成签到,获得积分10
18秒前
小蘑菇应助顺利的小陈采纳,获得10
19秒前
隐形曼青应助opus17采纳,获得10
19秒前
20秒前
20秒前
20秒前
共享精神应助虚幻的城采纳,获得30
21秒前
月月完成签到,获得积分10
21秒前
赘婿应助雪白的西牛采纳,获得10
22秒前
23秒前
23秒前
香蕉觅云应助jeal采纳,获得10
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3315844
求助须知:如何正确求助?哪些是违规求助? 2947564
关于积分的说明 8537553
捐赠科研通 2623671
什么是DOI,文献DOI怎么找? 1435373
科研通“疑难数据库(出版商)”最低求助积分说明 665558
邀请新用户注册赠送积分活动 651410