Swelling and mechanical properties were investigated for superporous hydrogels (SPHs) of poly(acrylamide-co-acrylic acid)/polyethylenimine (P(AM-co-AA)/PEI) interpenetrating polymer networks (IPNs). Gelation kinetics of SPHs changed significantly according to the acidic condition of reactant. The compressive strength of neutralized SPHs decreased monotonically with AA concentration, while the maximum swelling was observed around the AA weight fraction of 0.4 for all PEI concentrations. The SPH samples composed of high concentrations of AA and PEI were easily cracked in water due to the swelling stress developed during water uptake. The swelling kinetics decreased with increasing PEI and PAA concentrations because of the high molecular entanglement and network density associated with ionic interaction between PAA and PEI molecules. For non-neutralized SPHs, the equilibrium water uptake decreased but the compressive strength increased with PEI and PAA concentrations by simple plasticization effect.