Stability criteria for complex ecosystems

捕食 生态学 生态网络 捕食者 理论(学习稳定性) 生态系统 食物网 生态系统理论 生物 计算机科学 机器学习
作者
Stefano Allesina,Si Tang
出处
期刊:Nature [Springer Nature]
卷期号:483 (7388): 205-208 被引量:1059
标识
DOI:10.1038/nature10832
摘要

Analysis of stability criteria for different types of complex ecological network shows key differences between predator–prey interactions, which are stabilizing, and competitive and mutualistic interactions, which are destabilizing. Writing in Nature 40 years ago, Robert May questioned a central belief in ecology. The accepted wisdom was that complex ecosystems were more stable than simpler ones, but May proved that sufficiently large or complex ecological networks tend towards instability. Since then, much work in theoretical ecology has centred on learning why specific non-random networks are stable in practice. Stefano Allesina and Si Tang have analysed stability criteria for different types of realistic networks, and found key differences between predator–prey interactions, which are stabilizing, and competitive and mutualistic interactions, which are destabilizing. Forty years ago, May proved1,2 that sufficiently large or complex ecological networks have a probability of persisting that is close to zero, contrary to previous expectations3,4,5. May analysed large networks in which species interact at random1,2,6. However, in natural systems pairs of species have well-defined interactions (for example predator–prey, mutualistic or competitive). Here we extend May’s results to these relationships and find remarkable differences between predator–prey interactions, which are stabilizing, and mutualistic and competitive interactions, which are destabilizing. We provide analytic stability criteria for all cases. We use the criteria to prove that, counterintuitively, the probability of stability for predator–prey networks decreases when a realistic food web structure is imposed7,8 or if there is a large preponderance of weak interactions9,10. Similarly, stability is negatively affected by nestedness11,12,13,14 in bipartite mutualistic networks. These results are found by separating the contribution of network structure and interaction strengths to stability. Stable predator–prey networks can be arbitrarily large and complex, provided that predator–prey pairs are tightly coupled. The stability criteria are widely applicable, because they hold for any system of differential equations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲫鱼炖豆腐完成签到 ,获得积分10
1秒前
上官若男应助lzy采纳,获得10
1秒前
黑斑白马完成签到,获得积分10
2秒前
朴素友桃完成签到,获得积分10
3秒前
4秒前
4秒前
6秒前
7秒前
7秒前
充电宝应助ppat5012采纳,获得10
7秒前
8秒前
123发布了新的文献求助10
9秒前
Hello应助谷粱紫槐采纳,获得10
9秒前
Zeze完成签到,获得积分10
9秒前
机智猴完成签到,获得积分10
9秒前
9秒前
BowieHuang应助666采纳,获得10
10秒前
钱大大完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
阿黎发布了新的文献求助30
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
12秒前
上官若男应助科研通管家采纳,获得10
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
Maestro_S应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
Maestro_S应助科研通管家采纳,获得10
13秒前
13秒前
Maestro_S应助科研通管家采纳,获得10
13秒前
orixero应助科研通管家采纳,获得30
13秒前
Owen应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5752140
求助须知:如何正确求助?哪些是违规求助? 5472900
关于积分的说明 15373131
捐赠科研通 4891251
什么是DOI,文献DOI怎么找? 2630284
邀请新用户注册赠送积分活动 1578475
关于科研通互助平台的介绍 1534465