Stability criteria for complex ecosystems

捕食 生态学 生态网络 捕食者 理论(学习稳定性) 生态系统 食物网 生态系统理论 生物 计算机科学 机器学习
作者
Stefano Allesina,Si Tang
出处
期刊:Nature [Springer Nature]
卷期号:483 (7388): 205-208 被引量:1059
标识
DOI:10.1038/nature10832
摘要

Analysis of stability criteria for different types of complex ecological network shows key differences between predator–prey interactions, which are stabilizing, and competitive and mutualistic interactions, which are destabilizing. Writing in Nature 40 years ago, Robert May questioned a central belief in ecology. The accepted wisdom was that complex ecosystems were more stable than simpler ones, but May proved that sufficiently large or complex ecological networks tend towards instability. Since then, much work in theoretical ecology has centred on learning why specific non-random networks are stable in practice. Stefano Allesina and Si Tang have analysed stability criteria for different types of realistic networks, and found key differences between predator–prey interactions, which are stabilizing, and competitive and mutualistic interactions, which are destabilizing. Forty years ago, May proved1,2 that sufficiently large or complex ecological networks have a probability of persisting that is close to zero, contrary to previous expectations3,4,5. May analysed large networks in which species interact at random1,2,6. However, in natural systems pairs of species have well-defined interactions (for example predator–prey, mutualistic or competitive). Here we extend May’s results to these relationships and find remarkable differences between predator–prey interactions, which are stabilizing, and mutualistic and competitive interactions, which are destabilizing. We provide analytic stability criteria for all cases. We use the criteria to prove that, counterintuitively, the probability of stability for predator–prey networks decreases when a realistic food web structure is imposed7,8 or if there is a large preponderance of weak interactions9,10. Similarly, stability is negatively affected by nestedness11,12,13,14 in bipartite mutualistic networks. These results are found by separating the contribution of network structure and interaction strengths to stability. Stable predator–prey networks can be arbitrarily large and complex, provided that predator–prey pairs are tightly coupled. The stability criteria are widely applicable, because they hold for any system of differential equations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朱浩泽完成签到,获得积分10
刚刚
qq大魔王发布了新的文献求助50
刚刚
柏拉图发布了新的文献求助10
刚刚
刚刚
1秒前
nekobeing发布了新的文献求助50
1秒前
LJR完成签到,获得积分20
2秒前
2秒前
Mathilda完成签到,获得积分10
2秒前
3秒前
5秒前
缥缈尔丝发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
Demon发布了新的文献求助10
5秒前
嘿嘿完成签到,获得积分10
5秒前
雨醉东风发布了新的文献求助10
5秒前
6秒前
共享精神应助山东及时雨采纳,获得10
6秒前
斯文败类应助嗯哼采纳,获得10
6秒前
6秒前
6秒前
糖豆发布了新的文献求助10
6秒前
莱茵河完成签到 ,获得积分10
7秒前
cucu完成签到,获得积分20
7秒前
7秒前
SID发布了新的文献求助10
7秒前
健忘鞋垫完成签到,获得积分10
9秒前
nihaoxiaoai完成签到,获得积分10
9秒前
友好绿柏发布了新的文献求助10
9秒前
树苗完成签到,获得积分10
9秒前
11完成签到,获得积分10
9秒前
9秒前
10秒前
77完成签到,获得积分10
10秒前
小太阳哈哈完成签到 ,获得积分10
10秒前
兰亭序完成签到,获得积分10
10秒前
10秒前
11秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619809
求助须知:如何正确求助?哪些是违规求助? 4704349
关于积分的说明 14927602
捐赠科研通 4760460
什么是DOI,文献DOI怎么找? 2550657
邀请新用户注册赠送积分活动 1513453
关于科研通互助平台的介绍 1474498