The potential of amifostine: from cytoprotectant to therapeutic agent

化学 癌症研究
作者
Valeria Santini,Francis J. Giles
出处
期刊:Haematologica [Ferrata Storti Foundation]
卷期号:84 (11): 1035-1042 被引量:74
标识
DOI:10.3324/%x
摘要

BACKGROUND AND OBJECTIVE: Amifostine is an inorganic thiophosphate cytoprotective agent known chemically as ethanethiol, 2-[(3-aminopropyl)amino]dihydrogen phosphate. It is a pro-drug of free thiol that may act as a scavenger of free radicals generated in tissues exposed to cytotoxic drugs, and binds to reactive metabolites of such drugs. Amifostine was originally developed as a radioprotective agent in a classified nuclear warfare project. Following declassification of the project it was evaluated as a cytoprotective agent against toxicity of the alkylating drugs and cisplatin. In fact, pretreatment with amifostine was well tolerated and reduced the cumulative hematologic, renal and neurological toxicity associated with cisplatin, cyclophosphamide and vinblastine therapy of advanced and metastatic solid tumors. The objective of this review is to focus the importance of amifostine as a myeloprotective and cytoprotective drug during treatment with chemotherapeutics, presenting the most recent results, and to discuss the application of amifostine in the therapy of myelodysplastic syndromes. EVIDENCE AND INFORMATION SOURCES: The material analyzed in this study includes data published or under publication by the authors as full papers or clinical protocols. Articles and abstracts published in Journals covered by Medline constitute the other source of information. STATE OF THE ART AND PERSPECTIVES: Amifostine, formerly known as WR-2721, is an organic thiophosphate that was developed to protect normal tissues selectively against the toxicities of chemotherapy and radiation. Amifostine is a pro-drug that is dephosphorylated at the tissue site to its active metabolite by alkaline phosphatase. Differences in the alkaline phosphatase concentrations of normal versus tumor tissues can result in greater conversion of amifostine in normal tissues. Once inside the cell the free thiol provides an alternative target to DNA and RNA for the reactive molecules of alkylating or platinum agents and acts as a potent scavenger of the oxygen free radicals induced by ionizing radiation and some chemotherapies. Preclinical animal studies demonstrated that the administration of amifostine protected against a variety of chemotherapy-related toxicities including cisplatin-induced nephrotoxicity, cisplatin-induced neurotoxicity, cyclophosphamide- and bleomycin-induced pulmonary toxicity, and the cytotoxicities (including cardiotoxicity) induced by doxorubicin and related chemotherapeutic agents. Amifostine was shown to protect a variety of animal species from lethal doses of radiation. Studies in tumor-bearing animals demonstrated that the administration of amifostine results in cytoprotection without loss of antitumor activity. Multiple phase I studies were carried out with amifostine in combination with chemotherapy for various neoplasms. Appropriate doses of amifostine resulted to be 740-910 mg/m(2) in a single dose regimen, and 340 mg/m(2) in a multiple dose regimen. Amifostine afforded not only hematologic protection, but also other organ protection from cytotoxic agents such as nephrotoxicity, mucositis and peripheral neuropathy from cisplatin. Many studies have been performed to investigate cytoprotective efficacy of amifostine. In brief, amifostine gives hematologic protection from cyclophosphamide, carboplatin, mitomycin C, fotemustine and radiotherapy; renal and peripheral nerve protection from cisplatin; mucosa, skin, and salivary gland from radiotherapy. In phase I/II studies these properties have been confirmed, together with a generally good tolerability of the drug, hypotension being the most common side effect. It has been observed that amifostine possibly enhances the anti-tumor effect of carboplatin, nitrogen mustard, melphalan, and cisplatin combined with 5-FU or vinblastine. For all these characteristics, amifostine is at present broadly used as supportive treatment during chemotherapy, in lymphomas and solid tumors, and its spec
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
香妃完成签到,获得积分10
刚刚
钟佳芸发布了新的文献求助10
刚刚
壮观听芹完成签到,获得积分10
刚刚
只只发布了新的文献求助10
1秒前
小熊完成签到 ,获得积分10
1秒前
1秒前
1秒前
wujin完成签到,获得积分10
1秒前
1秒前
宋真玉完成签到 ,获得积分10
2秒前
隐形曼青应助差一点采纳,获得10
2秒前
fuws完成签到 ,获得积分10
2秒前
2秒前
不想找文献完成签到,获得积分10
2秒前
zkl完成签到,获得积分10
2秒前
3秒前
归尘发布了新的文献求助10
3秒前
爆米花应助yyy采纳,获得10
3秒前
萨菲罗斯发布了新的文献求助10
3秒前
自然的枫叶完成签到,获得积分10
3秒前
完美世界应助阔达雨泽采纳,获得10
3秒前
笑点低的泥猴桃完成签到,获得积分10
3秒前
YY发布了新的文献求助10
3秒前
Ambition9发布了新的文献求助10
4秒前
SciGPT应助SihanYin采纳,获得10
4秒前
DHY完成签到,获得积分20
4秒前
charles发布了新的文献求助10
4秒前
华仔应助林林采纳,获得10
5秒前
5秒前
爱听歌老1发布了新的文献求助10
5秒前
风清扬应助kk采纳,获得10
5秒前
5秒前
6秒前
Hello应助单纯剑鬼采纳,获得10
6秒前
故意的煎蛋完成签到,获得积分10
6秒前
哈哈发布了新的文献求助10
7秒前
现实的宛秋完成签到,获得积分20
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505994
求助须知:如何正确求助?哪些是违规求助? 4601482
关于积分的说明 14476730
捐赠科研通 4535445
什么是DOI,文献DOI怎么找? 2485408
邀请新用户注册赠送积分活动 1468357
关于科研通互助平台的介绍 1440869