The potential of amifostine: from cytoprotectant to therapeutic agent

化学 癌症研究
作者
Valeria Santini,Francis J. Giles
出处
期刊:Haematologica [Ferrata Storti Foundation]
卷期号:84 (11): 1035-1042 被引量:74
标识
DOI:10.3324/%x
摘要

BACKGROUND AND OBJECTIVE: Amifostine is an inorganic thiophosphate cytoprotective agent known chemically as ethanethiol, 2-[(3-aminopropyl)amino]dihydrogen phosphate. It is a pro-drug of free thiol that may act as a scavenger of free radicals generated in tissues exposed to cytotoxic drugs, and binds to reactive metabolites of such drugs. Amifostine was originally developed as a radioprotective agent in a classified nuclear warfare project. Following declassification of the project it was evaluated as a cytoprotective agent against toxicity of the alkylating drugs and cisplatin. In fact, pretreatment with amifostine was well tolerated and reduced the cumulative hematologic, renal and neurological toxicity associated with cisplatin, cyclophosphamide and vinblastine therapy of advanced and metastatic solid tumors. The objective of this review is to focus the importance of amifostine as a myeloprotective and cytoprotective drug during treatment with chemotherapeutics, presenting the most recent results, and to discuss the application of amifostine in the therapy of myelodysplastic syndromes. EVIDENCE AND INFORMATION SOURCES: The material analyzed in this study includes data published or under publication by the authors as full papers or clinical protocols. Articles and abstracts published in Journals covered by Medline constitute the other source of information. STATE OF THE ART AND PERSPECTIVES: Amifostine, formerly known as WR-2721, is an organic thiophosphate that was developed to protect normal tissues selectively against the toxicities of chemotherapy and radiation. Amifostine is a pro-drug that is dephosphorylated at the tissue site to its active metabolite by alkaline phosphatase. Differences in the alkaline phosphatase concentrations of normal versus tumor tissues can result in greater conversion of amifostine in normal tissues. Once inside the cell the free thiol provides an alternative target to DNA and RNA for the reactive molecules of alkylating or platinum agents and acts as a potent scavenger of the oxygen free radicals induced by ionizing radiation and some chemotherapies. Preclinical animal studies demonstrated that the administration of amifostine protected against a variety of chemotherapy-related toxicities including cisplatin-induced nephrotoxicity, cisplatin-induced neurotoxicity, cyclophosphamide- and bleomycin-induced pulmonary toxicity, and the cytotoxicities (including cardiotoxicity) induced by doxorubicin and related chemotherapeutic agents. Amifostine was shown to protect a variety of animal species from lethal doses of radiation. Studies in tumor-bearing animals demonstrated that the administration of amifostine results in cytoprotection without loss of antitumor activity. Multiple phase I studies were carried out with amifostine in combination with chemotherapy for various neoplasms. Appropriate doses of amifostine resulted to be 740-910 mg/m(2) in a single dose regimen, and 340 mg/m(2) in a multiple dose regimen. Amifostine afforded not only hematologic protection, but also other organ protection from cytotoxic agents such as nephrotoxicity, mucositis and peripheral neuropathy from cisplatin. Many studies have been performed to investigate cytoprotective efficacy of amifostine. In brief, amifostine gives hematologic protection from cyclophosphamide, carboplatin, mitomycin C, fotemustine and radiotherapy; renal and peripheral nerve protection from cisplatin; mucosa, skin, and salivary gland from radiotherapy. In phase I/II studies these properties have been confirmed, together with a generally good tolerability of the drug, hypotension being the most common side effect. It has been observed that amifostine possibly enhances the anti-tumor effect of carboplatin, nitrogen mustard, melphalan, and cisplatin combined with 5-FU or vinblastine. For all these characteristics, amifostine is at present broadly used as supportive treatment during chemotherapy, in lymphomas and solid tumors, and its spec
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高佳升完成签到,获得积分10
刚刚
1秒前
tianqi发布了新的文献求助10
1秒前
SunnyZhou完成签到,获得积分10
1秒前
千早爱音完成签到,获得积分10
1秒前
VDC发布了新的文献求助10
2秒前
Lucas应助爱吃巧乐兹采纳,获得10
2秒前
犹豫酸奶发布了新的文献求助10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
shhoing应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
需要论文应助科研通管家采纳,获得10
3秒前
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
luhuitou应助科研通管家采纳,获得10
4秒前
今后应助科研通管家采纳,获得10
4秒前
敬之发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
修辛完成签到 ,获得积分10
4秒前
棉花羊5041发布了新的文献求助10
5秒前
orixero应助Jeremy采纳,获得10
5秒前
史呆芬完成签到,获得积分10
6秒前
fishuae完成签到,获得积分20
6秒前
晨曦夕日完成签到,获得积分10
6秒前
阿白完成签到 ,获得积分10
6秒前
SHPING完成签到,获得积分10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545786
求助须知:如何正确求助?哪些是违规求助? 4631840
关于积分的说明 14622683
捐赠科研通 4573553
什么是DOI,文献DOI怎么找? 2507605
邀请新用户注册赠送积分活动 1484320
关于科研通互助平台的介绍 1455594