Additive logistic regression: a statistical view of boosting (With discussion and a rejoinder by the authors)

数学 Boosting(机器学习) 梯度升压 决策树 计量经济学 人工智能 伯努利原理 多项式分布 逻辑回归 随机森林 多项式logistic回归 机器学习 计算机科学 工程类 航空航天工程
作者
Jerome H. Friedman,Trevor Hastie,Robert Tibshirani
出处
期刊:Annals of Statistics [Institute of Mathematical Statistics]
卷期号:28 (2) 被引量:6654
标识
DOI:10.1214/aos/1016218223
摘要

Boosting is one of the most important recent developments in classification methodology. Boosting works by sequentially applying a classification algorithm to reweighted versions of the training data and then taking a weighted majority vote of the sequence of classifiers thus produced. For many classification algorithms, this simple strategy results in dramatic improvements in performance. We show that this seemingly mysterious phenomenon can be understood in terms of well-known statistical principles, namely additive modeling and maximum likelihood. For the two-class problem, boosting can be viewed as an approximation to additive modeling on the logistic scale using maximum Bernoulli likelihood as a criterion. We develop more direct approximations and show that they exhibit nearly identical results to boosting. Direct multiclass generalizations based on multinomial likelihood are derived that exhibit performance comparable to other recently proposed multiclass generalizations of boosting in most situations, and far superior in some. We suggest a minor modification to boosting that can reduce computation, often by factors of 10 to 50. Finally, we apply these insights to produce an alternative formulation of boosting decision trees. This approach, based on best-first truncated tree induction, often leads to better performance, and can provide interpretable descriptions of the aggregate decision rule. It is also much faster computationally, making it more suitable to large-scale data mining applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笑点低的紫完成签到,获得积分10
刚刚
晚风完成签到,获得积分10
1秒前
leishenwang完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
Sheryl完成签到,获得积分10
2秒前
缓慢晟睿完成签到,获得积分10
2秒前
细心沛山完成签到,获得积分10
2秒前
SYY完成签到,获得积分10
2秒前
Creamsoda完成签到,获得积分10
3秒前
深海鳕鱼完成签到,获得积分10
4秒前
李明涵完成签到 ,获得积分10
4秒前
坚强幼荷发布了新的文献求助10
5秒前
phw完成签到,获得积分10
5秒前
6秒前
6秒前
万能图书馆应助lixm采纳,获得10
6秒前
SYY发布了新的文献求助10
6秒前
4659完成签到 ,获得积分10
6秒前
7秒前
深情安青应助lyh采纳,获得10
7秒前
嘟嘟等文章完成签到,获得积分10
7秒前
1997_Aris发布了新的文献求助10
7秒前
心如止水完成签到,获得积分10
8秒前
张腾飞发布了新的文献求助20
8秒前
Anyemzl完成签到,获得积分10
8秒前
好学的猪发布了新的文献求助10
8秒前
小王爱看文献完成签到 ,获得积分10
8秒前
9秒前
kathy发布了新的文献求助30
10秒前
10秒前
老叶发布了新的文献求助10
11秒前
音悦台发布了新的文献求助10
11秒前
13秒前
13秒前
13秒前
13秒前
小yang发布了新的文献求助10
13秒前
13秒前
13秒前
小杨完成签到,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986586
求助须知:如何正确求助?哪些是违规求助? 3529069
关于积分的说明 11242999
捐赠科研通 3267514
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881175
科研通“疑难数据库(出版商)”最低求助积分说明 808582