Additive logistic regression: a statistical view of boosting (With discussion and a rejoinder by the authors)

数学 Boosting(机器学习) 梯度升压 决策树 计量经济学 人工智能 伯努利原理 多项式分布 逻辑回归 随机森林 多项式logistic回归 机器学习 计算机科学 工程类 航空航天工程
作者
Jerome H. Friedman,Trevor Hastie,Robert Tibshirani
出处
期刊:Annals of Statistics [Institute of Mathematical Statistics]
卷期号:28 (2) 被引量:6654
标识
DOI:10.1214/aos/1016218223
摘要

Boosting is one of the most important recent developments in classification methodology. Boosting works by sequentially applying a classification algorithm to reweighted versions of the training data and then taking a weighted majority vote of the sequence of classifiers thus produced. For many classification algorithms, this simple strategy results in dramatic improvements in performance. We show that this seemingly mysterious phenomenon can be understood in terms of well-known statistical principles, namely additive modeling and maximum likelihood. For the two-class problem, boosting can be viewed as an approximation to additive modeling on the logistic scale using maximum Bernoulli likelihood as a criterion. We develop more direct approximations and show that they exhibit nearly identical results to boosting. Direct multiclass generalizations based on multinomial likelihood are derived that exhibit performance comparable to other recently proposed multiclass generalizations of boosting in most situations, and far superior in some. We suggest a minor modification to boosting that can reduce computation, often by factors of 10 to 50. Finally, we apply these insights to produce an alternative formulation of boosting decision trees. This approach, based on best-first truncated tree induction, often leads to better performance, and can provide interpretable descriptions of the aggregate decision rule. It is also much faster computationally, making it more suitable to large-scale data mining applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
haku完成签到,获得积分10
刚刚
可爱的函函应助laodie采纳,获得10
2秒前
Singularity应助忆楠采纳,获得10
3秒前
4秒前
请叫我风吹麦浪应助PengHu采纳,获得30
5秒前
jjjjjj完成签到,获得积分10
5秒前
凝子老师发布了新的文献求助10
7秒前
7秒前
橙子fy16_发布了新的文献求助10
9秒前
cookie完成签到,获得积分10
9秒前
柒柒的小熊完成签到,获得积分10
10秒前
10秒前
Hello应助萌之痴痴采纳,获得10
11秒前
hahaer完成签到,获得积分10
13秒前
领导范儿应助失眠虔纹采纳,获得10
14秒前
15秒前
Owen应助凝子老师采纳,获得10
18秒前
18秒前
南宫炽滔完成签到 ,获得积分10
20秒前
20秒前
丘比特应助飞羽采纳,获得10
21秒前
沙拉发布了新的文献求助10
21秒前
22秒前
23秒前
椰子糖完成签到 ,获得积分10
24秒前
24秒前
ZHU完成签到,获得积分10
25秒前
阳阳发布了新的文献求助10
26秒前
Raymond应助雪山飞龙采纳,获得10
26秒前
kk发布了新的文献求助10
27秒前
27秒前
28秒前
28秒前
28秒前
29秒前
32秒前
果果瑞宁发布了新的文献求助10
32秒前
wewewew发布了新的文献求助10
32秒前
32秒前
打打应助沙拉采纳,获得10
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849