Additive logistic regression: a statistical view of boosting (With discussion and a rejoinder by the authors)

数学 Boosting(机器学习) 梯度升压 决策树 计量经济学 人工智能 伯努利原理 多项式分布 逻辑回归 随机森林 多项式logistic回归 机器学习 计算机科学 工程类 航空航天工程
作者
Jerome H. Friedman,Trevor Hastie,Robert Tibshirani
出处
期刊:Annals of Statistics [Institute of Mathematical Statistics]
卷期号:28 (2) 被引量:6654
标识
DOI:10.1214/aos/1016218223
摘要

Boosting is one of the most important recent developments in classification methodology. Boosting works by sequentially applying a classification algorithm to reweighted versions of the training data and then taking a weighted majority vote of the sequence of classifiers thus produced. For many classification algorithms, this simple strategy results in dramatic improvements in performance. We show that this seemingly mysterious phenomenon can be understood in terms of well-known statistical principles, namely additive modeling and maximum likelihood. For the two-class problem, boosting can be viewed as an approximation to additive modeling on the logistic scale using maximum Bernoulli likelihood as a criterion. We develop more direct approximations and show that they exhibit nearly identical results to boosting. Direct multiclass generalizations based on multinomial likelihood are derived that exhibit performance comparable to other recently proposed multiclass generalizations of boosting in most situations, and far superior in some. We suggest a minor modification to boosting that can reduce computation, often by factors of 10 to 50. Finally, we apply these insights to produce an alternative formulation of boosting decision trees. This approach, based on best-first truncated tree induction, often leads to better performance, and can provide interpretable descriptions of the aggregate decision rule. It is also much faster computationally, making it more suitable to large-scale data mining applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助raffia采纳,获得10
2秒前
树叶有专攻完成签到,获得积分10
2秒前
研研研完成签到,获得积分10
2秒前
orange9发布了新的文献求助10
2秒前
乐观又lucky完成签到,获得积分10
2秒前
4秒前
勤奋牛排完成签到,获得积分10
6秒前
qin希望应助椒盐丸子采纳,获得10
7秒前
Jes完成签到,获得积分10
8秒前
bbbb完成签到,获得积分10
8秒前
善学以致用应助caisongliang采纳,获得10
8秒前
山河与海发布了新的文献求助10
9秒前
柒柒完成签到,获得积分10
9秒前
李健应助zuijiasunyou采纳,获得10
9秒前
打打应助Zeal采纳,获得10
10秒前
Henry完成签到,获得积分10
10秒前
11秒前
11秒前
万能图书馆应助spray采纳,获得10
11秒前
12秒前
Y.完成签到,获得积分10
13秒前
myyy完成签到 ,获得积分10
16秒前
YH发布了新的文献求助10
17秒前
善学以致用应助卷不动了采纳,获得10
18秒前
19秒前
小猪啵比完成签到 ,获得积分10
19秒前
19秒前
椒盐丸子完成签到,获得积分10
20秒前
ljs发布了新的文献求助10
21秒前
淡淡冰薇完成签到,获得积分20
21秒前
子冈几号完成签到,获得积分10
21秒前
22秒前
bkagyin应助阿尼采纳,获得10
23秒前
刘英俊发布了新的文献求助10
23秒前
文艺的棒球完成签到,获得积分10
26秒前
纳斯达克发布了新的文献求助10
27秒前
苹果王子6699完成签到 ,获得积分10
27秒前
spray发布了新的文献求助10
27秒前
椰子树完成签到,获得积分10
28秒前
暴躁的访波完成签到,获得积分10
28秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123018
求助须知:如何正确求助?哪些是违规求助? 2773507
关于积分的说明 7718023
捐赠科研通 2429087
什么是DOI,文献DOI怎么找? 1290140
科研通“疑难数据库(出版商)”最低求助积分说明 621713
版权声明 600220