Additive logistic regression: a statistical view of boosting (With discussion and a rejoinder by the authors)

数学 Boosting(机器学习) 梯度升压 决策树 计量经济学 人工智能 伯努利原理 多项式分布 逻辑回归 随机森林 多项式logistic回归 机器学习 计算机科学 工程类 航空航天工程
作者
Jerome H. Friedman,Trevor Hastie,Robert Tibshirani
出处
期刊:Annals of Statistics [Institute of Mathematical Statistics]
卷期号:28 (2) 被引量:6654
标识
DOI:10.1214/aos/1016218223
摘要

Boosting is one of the most important recent developments in classification methodology. Boosting works by sequentially applying a classification algorithm to reweighted versions of the training data and then taking a weighted majority vote of the sequence of classifiers thus produced. For many classification algorithms, this simple strategy results in dramatic improvements in performance. We show that this seemingly mysterious phenomenon can be understood in terms of well-known statistical principles, namely additive modeling and maximum likelihood. For the two-class problem, boosting can be viewed as an approximation to additive modeling on the logistic scale using maximum Bernoulli likelihood as a criterion. We develop more direct approximations and show that they exhibit nearly identical results to boosting. Direct multiclass generalizations based on multinomial likelihood are derived that exhibit performance comparable to other recently proposed multiclass generalizations of boosting in most situations, and far superior in some. We suggest a minor modification to boosting that can reduce computation, often by factors of 10 to 50. Finally, we apply these insights to produce an alternative formulation of boosting decision trees. This approach, based on best-first truncated tree induction, often leads to better performance, and can provide interpretable descriptions of the aggregate decision rule. It is also much faster computationally, making it more suitable to large-scale data mining applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大耳朵图图应助善良班采纳,获得10
1秒前
浮游应助hkh采纳,获得10
2秒前
2秒前
2秒前
3秒前
思苇完成签到,获得积分10
4秒前
SKY完成签到,获得积分10
4秒前
太叔夜南完成签到,获得积分10
5秒前
wangting发布了新的文献求助10
6秒前
gstaihn发布了新的文献求助10
6秒前
LYJ完成签到,获得积分10
6秒前
晚灯君完成签到 ,获得积分10
7秒前
zn315315发布了新的文献求助30
7秒前
mtt完成签到,获得积分10
8秒前
Sylvie发布了新的文献求助30
8秒前
8秒前
9秒前
10秒前
土豪的钻石完成签到,获得积分10
10秒前
小猫最受完成签到,获得积分10
12秒前
清图完成签到,获得积分10
12秒前
Ann驳回了bmhs2017应助
13秒前
13秒前
13秒前
14秒前
三千完成签到,获得积分10
14秒前
小黄车完成签到,获得积分10
14秒前
草木完成签到 ,获得积分10
17秒前
乐乐应助赵真采纳,获得10
17秒前
BK2008发布了新的文献求助10
18秒前
18秒前
石斑鱼完成签到,获得积分10
19秒前
19秒前
拉长的念珍完成签到,获得积分10
19秒前
levie发布了新的文献求助10
19秒前
Lucas应助Janmy采纳,获得10
20秒前
科研通AI6应助笑点低雅旋采纳,获得10
21秒前
Sylvie完成签到,获得积分20
22秒前
22秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379399
求助须知:如何正确求助?哪些是违规求助? 4503761
关于积分的说明 14016516
捐赠科研通 4412511
什么是DOI,文献DOI怎么找? 2423853
邀请新用户注册赠送积分活动 1416678
关于科研通互助平台的介绍 1394244