A novel numerical optimization algorithm inspired from weed colonization

模拟退火 计算机科学 全局优化 贝叶斯优化 数学优化 最大值和最小值 稳健性(进化) 随机优化 元优化 杂草 算法 元启发式 单纯形算法 人工智能 数学 生态学 线性规划 数学分析 化学 基因 生物 生物化学
作者
Ali Reza Mehrabian,Caro Lucas
出处
期刊:Ecological Informatics [Elsevier]
卷期号:1 (4): 355-366 被引量:1245
标识
DOI:10.1016/j.ecoinf.2006.07.003
摘要

This paper introduces a novel numerical stochastic optimization algorithm inspired from colonizing weeds. Weeds are plants whose vigorous, invasive habits of growth pose a serious threat to desirable, cultivated plants making them a threat for agriculture. Weeds have shown to be very robust and adaptive to change in environment. Thus, capturing their properties would lead to a powerful optimization algorithm. It is tried to mimic robustness, adaptation and randomness of colonizing weeds in a simple but effective optimizing algorithm designated as Invasive Weed Optimization (IWO). The feasibility, the efficiency and the effectiveness of IWO are tested in details through a set of benchmark multi-dimensional functions, of which global and local minima are known. The reported results are compared with other recent evolutionary-based algorithms: genetic algorithms, memetic algorithms, particle swarm optimization, and shuffled frog leaping. The results are also compared with different versions of simulated annealing — a generic probabilistic meta-algorithm for the global optimization problem — which are simplex simulated annealing, and direct search simulated annealing. Additionally, IWO is employed for finding a solution for an engineering problem, which is optimization and tuning of a robust controller. The experimental results suggest that results from IWO are better than results from other methods. In conclusion, the performance of IWO has a reasonable performance for all the test functions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
suansuan发布了新的文献求助10
刚刚
所所应助粱问凝采纳,获得10
1秒前
1秒前
圆圆方方完成签到,获得积分10
1秒前
晚风摇曳发布了新的文献求助10
2秒前
2秒前
澜冰发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
Jared应助体贴的安蕾采纳,获得10
3秒前
3秒前
4秒前
Xu发布了新的文献求助20
4秒前
4秒前
4秒前
4秒前
科研小白发布了新的文献求助10
5秒前
搜集达人应助gyf采纳,获得10
5秒前
5秒前
5秒前
5秒前
李爱国应助pliciyir采纳,获得10
5秒前
樂楽留下了新的社区评论
6秒前
pw发布了新的文献求助30
6秒前
7秒前
you发布了新的文献求助30
7秒前
张天宝真的爱科研完成签到,获得积分10
7秒前
小纸人发布了新的文献求助10
7秒前
科研通AI6应助无辜的黄豆采纳,获得10
8秒前
科研通AI6应助如意绾绾采纳,获得10
8秒前
8秒前
可乐发布了新的文献求助10
8秒前
张丁发布了新的文献求助10
8秒前
8秒前
斯文败类应助聪慧的从露采纳,获得10
8秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
NexusExplorer应助叶子采纳,获得30
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526571
求助须知:如何正确求助?哪些是违规求助? 4616631
关于积分的说明 14554856
捐赠科研通 4554863
什么是DOI,文献DOI怎么找? 2496123
邀请新用户注册赠送积分活动 1476503
关于科研通互助平台的介绍 1448046