A novel numerical optimization algorithm inspired from weed colonization

模拟退火 计算机科学 全局优化 贝叶斯优化 数学优化 最大值和最小值 稳健性(进化) 随机优化 元优化 杂草 算法 元启发式 单纯形算法 人工智能 数学 生态学 线性规划 生物 数学分析 生物化学 化学 基因
作者
Ali Reza Mehrabian,Caro Lucas
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:1 (4): 355-366 被引量:1245
标识
DOI:10.1016/j.ecoinf.2006.07.003
摘要

This paper introduces a novel numerical stochastic optimization algorithm inspired from colonizing weeds. Weeds are plants whose vigorous, invasive habits of growth pose a serious threat to desirable, cultivated plants making them a threat for agriculture. Weeds have shown to be very robust and adaptive to change in environment. Thus, capturing their properties would lead to a powerful optimization algorithm. It is tried to mimic robustness, adaptation and randomness of colonizing weeds in a simple but effective optimizing algorithm designated as Invasive Weed Optimization (IWO). The feasibility, the efficiency and the effectiveness of IWO are tested in details through a set of benchmark multi-dimensional functions, of which global and local minima are known. The reported results are compared with other recent evolutionary-based algorithms: genetic algorithms, memetic algorithms, particle swarm optimization, and shuffled frog leaping. The results are also compared with different versions of simulated annealing — a generic probabilistic meta-algorithm for the global optimization problem — which are simplex simulated annealing, and direct search simulated annealing. Additionally, IWO is employed for finding a solution for an engineering problem, which is optimization and tuning of a robust controller. The experimental results suggest that results from IWO are better than results from other methods. In conclusion, the performance of IWO has a reasonable performance for all the test functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘泽洋发布了新的文献求助10
刚刚
2秒前
gabee完成签到 ,获得积分10
2秒前
典雅碧空应助科研通管家采纳,获得10
2秒前
单薄冰兰应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
JamesPei应助zzzzz采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
朴实的依风给澪澪澪的求助进行了留言
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
典雅碧空应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
leaolf应助科研通管家采纳,获得10
4秒前
arizaki7应助科研通管家采纳,获得10
4秒前
FashionBoy应助李金玉采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
小二郎应助加油女王采纳,获得10
4秒前
4秒前
5秒前
Zz完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
8秒前
daisies应助lll采纳,获得20
9秒前
9秒前
老实绮琴发布了新的文献求助40
9秒前
10秒前
不想干活应助追寻的问玉采纳,获得30
10秒前
11秒前
素笺发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4608788
求助须知:如何正确求助?哪些是违规求助? 4015227
关于积分的说明 12432502
捐赠科研通 3696489
什么是DOI,文献DOI怎么找? 2038043
邀请新用户注册赠送积分活动 1071144
科研通“疑难数据库(出版商)”最低求助积分说明 955017