A novel numerical optimization algorithm inspired from weed colonization

模拟退火 计算机科学 全局优化 贝叶斯优化 数学优化 最大值和最小值 稳健性(进化) 随机优化 元优化 杂草 算法 元启发式 单纯形算法 人工智能 数学 生态学 线性规划 数学分析 化学 基因 生物 生物化学
作者
Ali Reza Mehrabian,Caro Lucas
出处
期刊:Ecological Informatics [Elsevier]
卷期号:1 (4): 355-366 被引量:1245
标识
DOI:10.1016/j.ecoinf.2006.07.003
摘要

This paper introduces a novel numerical stochastic optimization algorithm inspired from colonizing weeds. Weeds are plants whose vigorous, invasive habits of growth pose a serious threat to desirable, cultivated plants making them a threat for agriculture. Weeds have shown to be very robust and adaptive to change in environment. Thus, capturing their properties would lead to a powerful optimization algorithm. It is tried to mimic robustness, adaptation and randomness of colonizing weeds in a simple but effective optimizing algorithm designated as Invasive Weed Optimization (IWO). The feasibility, the efficiency and the effectiveness of IWO are tested in details through a set of benchmark multi-dimensional functions, of which global and local minima are known. The reported results are compared with other recent evolutionary-based algorithms: genetic algorithms, memetic algorithms, particle swarm optimization, and shuffled frog leaping. The results are also compared with different versions of simulated annealing — a generic probabilistic meta-algorithm for the global optimization problem — which are simplex simulated annealing, and direct search simulated annealing. Additionally, IWO is employed for finding a solution for an engineering problem, which is optimization and tuning of a robust controller. The experimental results suggest that results from IWO are better than results from other methods. In conclusion, the performance of IWO has a reasonable performance for all the test functions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
2秒前
111发布了新的文献求助10
3秒前
3秒前
文静盼晴完成签到,获得积分20
4秒前
YAN发布了新的文献求助10
5秒前
张广雪完成签到,获得积分10
5秒前
长亭发布了新的文献求助10
6秒前
CipherSage应助张小小采纳,获得30
7秒前
7秒前
7秒前
Owen应助xixixi采纳,获得10
7秒前
十六夜彦完成签到,获得积分10
7秒前
guijiu发布了新的文献求助10
7秒前
机智333关注了科研通微信公众号
8秒前
祝英台完成签到,获得积分10
9秒前
动听白秋完成签到 ,获得积分10
10秒前
XIAXIA完成签到 ,获得积分10
12秒前
azerox发布了新的文献求助10
12秒前
12秒前
13秒前
江小鱼在查文献完成签到,获得积分10
14秒前
14秒前
honger完成签到,获得积分10
14秒前
紫哈登完成签到,获得积分10
14秒前
共享精神应助577采纳,获得10
15秒前
15秒前
华仔应助阿良采纳,获得10
15秒前
16秒前
YAN完成签到,获得积分10
16秒前
16秒前
WHEN完成签到,获得积分10
16秒前
fuchao发布了新的文献求助10
17秒前
18秒前
18秒前
xixi发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
19秒前
雪山飞龙发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637511
求助须知:如何正确求助?哪些是违规求助? 4743448
关于积分的说明 14999325
捐赠科研通 4795636
什么是DOI,文献DOI怎么找? 2562096
邀请新用户注册赠送积分活动 1521574
关于科研通互助平台的介绍 1481559