A novel numerical optimization algorithm inspired from weed colonization

模拟退火 计算机科学 全局优化 贝叶斯优化 数学优化 最大值和最小值 稳健性(进化) 随机优化 元优化 杂草 算法 元启发式 单纯形算法 人工智能 数学 生态学 线性规划 数学分析 化学 基因 生物 生物化学
作者
Ali Reza Mehrabian,Caro Lucas
出处
期刊:Ecological Informatics [Elsevier]
卷期号:1 (4): 355-366 被引量:1245
标识
DOI:10.1016/j.ecoinf.2006.07.003
摘要

This paper introduces a novel numerical stochastic optimization algorithm inspired from colonizing weeds. Weeds are plants whose vigorous, invasive habits of growth pose a serious threat to desirable, cultivated plants making them a threat for agriculture. Weeds have shown to be very robust and adaptive to change in environment. Thus, capturing their properties would lead to a powerful optimization algorithm. It is tried to mimic robustness, adaptation and randomness of colonizing weeds in a simple but effective optimizing algorithm designated as Invasive Weed Optimization (IWO). The feasibility, the efficiency and the effectiveness of IWO are tested in details through a set of benchmark multi-dimensional functions, of which global and local minima are known. The reported results are compared with other recent evolutionary-based algorithms: genetic algorithms, memetic algorithms, particle swarm optimization, and shuffled frog leaping. The results are also compared with different versions of simulated annealing — a generic probabilistic meta-algorithm for the global optimization problem — which are simplex simulated annealing, and direct search simulated annealing. Additionally, IWO is employed for finding a solution for an engineering problem, which is optimization and tuning of a robust controller. The experimental results suggest that results from IWO are better than results from other methods. In conclusion, the performance of IWO has a reasonable performance for all the test functions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bingqing发布了新的文献求助10
1秒前
1秒前
2秒前
在水一方应助搞怪十八采纳,获得10
2秒前
2秒前
XIXI完成签到,获得积分20
2秒前
2秒前
张瑜发布了新的文献求助10
3秒前
小蘑菇应助第七个星球采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
霍师傅发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
Galaxy发布了新的文献求助10
7秒前
7秒前
7秒前
自觉凌蝶完成签到 ,获得积分10
7秒前
7秒前
tojobbb发布了新的文献求助10
8秒前
CN00016发布了新的文献求助10
8秒前
8秒前
affff完成签到 ,获得积分10
8秒前
8秒前
8秒前
Lucas应助wz采纳,获得10
8秒前
9秒前
9秒前
10秒前
10秒前
追风舞尘完成签到,获得积分20
10秒前
秀儿发布了新的文献求助10
10秒前
11秒前
沐易发布了新的文献求助10
11秒前
今后应助uncle采纳,获得10
11秒前
11秒前
共享精神应助快乐鞋垫采纳,获得10
12秒前
12秒前
天天快乐应助安详葶采纳,获得10
12秒前
英俊的铭应助巧克力曲奇采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609726
求助须知:如何正确求助?哪些是违规求助? 4694294
关于积分的说明 14881987
捐赠科研通 4720227
什么是DOI,文献DOI怎么找? 2544836
邀请新用户注册赠送积分活动 1509735
关于科研通互助平台的介绍 1472996