A novel numerical optimization algorithm inspired from weed colonization

模拟退火 计算机科学 全局优化 贝叶斯优化 数学优化 最大值和最小值 稳健性(进化) 随机优化 元优化 杂草 算法 元启发式 单纯形算法 人工智能 数学 生态学 线性规划 生物 数学分析 生物化学 化学 基因
作者
Ali Reza Mehrabian,Caro Lucas
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:1 (4): 355-366 被引量:1245
标识
DOI:10.1016/j.ecoinf.2006.07.003
摘要

This paper introduces a novel numerical stochastic optimization algorithm inspired from colonizing weeds. Weeds are plants whose vigorous, invasive habits of growth pose a serious threat to desirable, cultivated plants making them a threat for agriculture. Weeds have shown to be very robust and adaptive to change in environment. Thus, capturing their properties would lead to a powerful optimization algorithm. It is tried to mimic robustness, adaptation and randomness of colonizing weeds in a simple but effective optimizing algorithm designated as Invasive Weed Optimization (IWO). The feasibility, the efficiency and the effectiveness of IWO are tested in details through a set of benchmark multi-dimensional functions, of which global and local minima are known. The reported results are compared with other recent evolutionary-based algorithms: genetic algorithms, memetic algorithms, particle swarm optimization, and shuffled frog leaping. The results are also compared with different versions of simulated annealing — a generic probabilistic meta-algorithm for the global optimization problem — which are simplex simulated annealing, and direct search simulated annealing. Additionally, IWO is employed for finding a solution for an engineering problem, which is optimization and tuning of a robust controller. The experimental results suggest that results from IWO are better than results from other methods. In conclusion, the performance of IWO has a reasonable performance for all the test functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rainkz发布了新的文献求助10
刚刚
Hh完成签到 ,获得积分10
刚刚
树懒吃吃发布了新的文献求助10
刚刚
刚刚
朴实迎梅发布了新的文献求助30
刚刚
不吃香菜发布了新的文献求助10
刚刚
刚刚
惊火完成签到,获得积分10
1秒前
1秒前
狂野的山雁完成签到,获得积分10
1秒前
优雅山柏发布了新的文献求助10
1秒前
2秒前
2秒前
李健的粉丝团团长应助tim采纳,获得10
2秒前
2秒前
木南发布了新的文献求助10
2秒前
青塘龙仔发布了新的文献求助10
2秒前
猇会不会完成签到,获得积分20
2秒前
林安笙完成签到,获得积分10
2秒前
SciGPT应助杆杆采纳,获得10
3秒前
浮游应助wsh071117采纳,获得10
3秒前
慕青应助dxm采纳,获得10
3秒前
自觉画板发布了新的文献求助10
3秒前
4秒前
汉堡包应助HM采纳,获得10
4秒前
5秒前
李健的小迷弟应助小畅采纳,获得10
5秒前
5秒前
香蕉觅云应助zyd采纳,获得10
5秒前
CodeCraft应助瑶瑶采纳,获得10
5秒前
肥猫发布了新的文献求助10
6秒前
球球发布了新的文献求助10
7秒前
水水水完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
森陌夏栀发布了新的文献求助10
7秒前
123应助雷涵晶采纳,获得10
8秒前
8秒前
Bai_shao完成签到,获得积分10
8秒前
9秒前
Daily发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5098708
求助须知:如何正确求助?哪些是违规求助? 4310813
关于积分的说明 13432372
捐赠科研通 4138156
什么是DOI,文献DOI怎么找? 2267123
邀请新用户注册赠送积分活动 1270164
关于科研通互助平台的介绍 1206454