Prediction of Human Pharmacokinetics From Preclinical Information: Comparative Accuracy of Quantitative Prediction Approaches

药代动力学 药理学 计算生物学 医学 计算机科学 生物
作者
Natilie Hosea,Wendy T. Collard,Susan Cole,Tristan S. Maurer,Rick X. Fang,Hannah M. Jones,Shefali Kakar,Yasuhiro Nakai,Bill J. Smith,Rob Webster,Kevin Beaumont
出处
期刊:The Journal of Clinical Pharmacology [Wiley]
卷期号:49 (5): 513-533 被引量:285
标识
DOI:10.1177/0091270009333209
摘要

Quantitative prediction of human pharmacokinetics is critical in assessing the viability of drug candidates and in determining first‐in‐human dosing. Numerous prediction methodologies, incorporating both in vitro and preclinical in vivo data, have been developed in recent years, each with advantages and disadvantages. However, the lack of a comprehensive data set, both preclinical and clinical, has limited efforts to evaluate the optimal strategy (or strategies) that results in quantitative predictions of human pharmacokinetics. To address this issue, the authors conducted a retrospective analysis using 50 proprietary compounds for which in vitro, preclinical pharmacokinetic data and oral single‐dose human pharmacokinetic data were available. Five predictive strategies, involving either allometry or use of unbound intrinsic clearance from microsomes or hepatocytes, were then compared for their ability to predict human oral clearance, half‐life through predictions of systemic clearance, volume of distribution, and bioavailability. Use of a single‐species scaling approach with rat, dog, or monkey was as accurate as or more accurate than using multiple‐species allometry. For those compounds cleared almost exclusively by P450‐mediated pathways, scaling from human liver microsomes was as predictive as single‐species scaling of clearance based on data from rat, dog, or monkey. These data suggest that use of predictive methods involving either single‐species in vivo data or in vitro human liver microsomes can quantitatively predict human in vivo pharmacokinetics and suggest the possibility of streamlining the predictive methodology through use of a single species or use only of human in vitro microsomal preparations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
现代的岩发布了新的文献求助10
3秒前
负责吃饭完成签到,获得积分10
3秒前
tzj发布了新的文献求助30
4秒前
Zhu完成签到,获得积分10
4秒前
简简单单完成签到 ,获得积分10
4秒前
5秒前
7秒前
香蕉觅云应助方法采纳,获得10
7秒前
着急的盼山完成签到,获得积分10
8秒前
现代的岩完成签到,获得积分10
9秒前
liudy发布了新的文献求助10
10秒前
11秒前
NYM完成签到 ,获得积分10
11秒前
摘星星完成签到,获得积分20
12秒前
仔仔完成签到 ,获得积分10
12秒前
15秒前
1412应助科研通管家采纳,获得10
15秒前
15秒前
李健应助科研通管家采纳,获得10
15秒前
隐形曼青应助科研通管家采纳,获得10
15秒前
墨殇应助科研通管家采纳,获得10
15秒前
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
orixero应助科研通管家采纳,获得10
15秒前
Orange应助科研通管家采纳,获得10
15秒前
1412应助科研通管家采纳,获得10
15秒前
我是张铁柱·完成签到,获得积分20
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
ATLI应助科研通管家采纳,获得10
15秒前
共享精神应助科研通管家采纳,获得10
16秒前
Hello应助科研通管家采纳,获得10
16秒前
小蘑菇应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
情怀应助科研通管家采纳,获得10
16秒前
ATLI应助科研通管家采纳,获得10
16秒前
wanci应助科研通管家采纳,获得10
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673872
求助须知:如何正确求助?哪些是违规求助? 3229298
关于积分的说明 9785160
捐赠科研通 2939933
什么是DOI,文献DOI怎么找? 1611432
邀请新用户注册赠送积分活动 760916
科研通“疑难数据库(出版商)”最低求助积分说明 736344