An iterative knowledge‐based scoring function for protein–protein recognition

诱饵 计算机科学 试验装置 功能(生物学) 迭代法 蛋白质功能 算法 人工智能 化学 生物 生物化学 进化生物学 基因 受体
作者
Sheng‐You Huang,Xiaoqin Zou
出处
期刊:Proteins [Wiley]
卷期号:72 (2): 557-579 被引量:272
标识
DOI:10.1002/prot.21949
摘要

Abstract Using an efficient iterative method, we have developed a distance‐dependent knowledge‐based scoring function to predict protein–protein interactions. The function, referred to as ITScore‐PP, was derived using the crystal structures of a training set of 851 protein–protein dimeric complexes containing true biological interfaces. The key idea of the iterative method for deriving ITScore‐PP is to improve the interatomic pair potentials by iteration, until the pair potentials can distinguish true binding modes from decoy modes for the protein–protein complexes in the training set. The iterative method circumvents the challenging reference state problem in deriving knowledge‐based potentials. The derived scoring function was used to evaluate the ligand orientations generated by ZDOCK 2.1 and the native ligand structures on a diverse set of 91 protein–protein complexes. For the bound test cases, ITScore‐PP yielded a success rate of 98.9% if the top 10 ranked orientations were considered. For the more realistic unbound test cases, the corresponding success rate was 40.7%. Furthermore, for faster orientational sampling purpose, several residue‐level knowledge‐based scoring functions were also derived following the similar iterative procedure. Among them, the scoring function that uses the side‐chain center of mass (SCM) to represent a residue, referred to as ITScore‐PP(SCM), showed the best performance and yielded success rates of 71.4% and 30.8% for the bound and unbound cases, respectively, when the top 10 orientations were considered. ITScore‐PP was further tested using two other published protein–protein docking decoy sets, the ZDOCK decoy set and the RosettaDock decoy set. In addition to binding mode prediction, the binding scores predicted by ITScore‐PP also correlated well with the experimentally determined binding affinities, yielding a correlation coefficient of R = 0.71 on a test set of 74 protein–protein complexes with known affinities. ITScore‐PP is computationally efficient. The average run time for ITScore‐PP was about 0.03 second per orientation (including optimization) on a personal computer with 3.2 GHz Pentium IV CPU and 3.0 GB RAM. The computational speed of ITScore‐PP(SCM) is about an order of magnitude faster than that of ITScore‐PP. ITScore‐PP and/or ITScore‐PP(SCM) can be combined with efficient protein docking software to study protein–protein recognition. Proteins 2008. © 2008 Wiley‐Liss, Inc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
云泥完成签到 ,获得积分10
1秒前
星辰大海应助晚庭落秋风采纳,获得10
4秒前
123发布了新的文献求助10
4秒前
无辜梨愁完成签到 ,获得积分10
5秒前
NexusExplorer应助老八采纳,获得10
5秒前
5秒前
Owen应助zzz采纳,获得10
5秒前
研友_LOK59L发布了新的文献求助10
6秒前
6秒前
整齐珩发布了新的文献求助30
6秒前
sseekker发布了新的文献求助10
6秒前
nusiew发布了新的文献求助30
7秒前
oyc完成签到,获得积分10
8秒前
JOUJOU发布了新的文献求助10
9秒前
科研小农民完成签到,获得积分10
11秒前
许右关注了科研通微信公众号
11秒前
淳于碧空发布了新的文献求助80
11秒前
木湾完成签到,获得积分10
12秒前
12秒前
繁笙发布了新的文献求助10
13秒前
领导范儿应助GRG采纳,获得10
14秒前
15秒前
15秒前
辛谷方松永旭完成签到 ,获得积分10
16秒前
TKMY发布了新的文献求助10
16秒前
wzh完成签到 ,获得积分10
16秒前
16秒前
zxyhb完成签到,获得积分10
16秒前
1Aaa发布了新的文献求助10
16秒前
17秒前
123完成签到,获得积分20
17秒前
18秒前
阳光的麦片完成签到,获得积分10
18秒前
12发布了新的文献求助10
19秒前
19秒前
席涑发布了新的文献求助10
19秒前
ding应助提拉米草采纳,获得10
19秒前
聪明的梦琪完成签到,获得积分10
20秒前
852应助周舟采纳,获得10
20秒前
研友_LOK59L发布了新的文献求助10
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 900
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313400
求助须知:如何正确求助?哪些是违规求助? 2945747
关于积分的说明 8526962
捐赠科研通 2621480
什么是DOI,文献DOI怎么找? 1433622
科研通“疑难数据库(出版商)”最低求助积分说明 665057
邀请新用户注册赠送积分活动 650600