电解质
阳极
锂(药物)
无机化学
化学
乙二醇
氢氧化锂
反应性(心理学)
三甲基硅烷
溶剂
分解
有机化学
电极
物理化学
离子
医学
替代医学
病理
离子交换
内分泌学
作者
Rajeev S. Assary,Jun Lü,Xiangyi Luo,Xiaoyi Zhang,Yang Ren,Huiming Wu,Hassan M. Albishri,Deia Abd El‐Hady,Abdullah S. Al‐Bogami,Larry A. Curtiss,Khalil Amine
出处
期刊:ChemPhysChem
[Wiley]
日期:2014-07-01
卷期号:15 (10): 2077-2083
被引量:9
标识
DOI:10.1002/cphc.201402130
摘要
Abstract A molecular‐level understanding of the reactions that occur at the lithium‐metal anode/electrolyte interphase is essential to improve the performance of Li–O 2 batteries. Experimental and computational techniques are applied to explore the reactivity of tri(ethylene glycol)‐substituted trimethylsilane (1NM3), a siloxane‐based ether electrolyte, at the lithium‐metal anode. In situ/ex situ X‐ray diffraction and Fourier‐transform infrared spectroscopy studies provide evidence of the formation of lithium hydroxide and lithium carbonates at the anode upon gradual degradation of the metallic lithium anode and the solvent molecules in the presence of oxygen. Density functional calculations performed to obtain a mechanistic understanding of the reductive decomposition of 1NM3 indicate that the decomposition does not require any apparent barrier to produce lithium hydroxide and lithium carbonates when the reduced 1NM3 solvent molecules interact with the oxygen crossing over from the cathode. This study indicates that degradation may be more significant in the case of the 1NM3 solvent, compared to linear ethers such as tetraglyme or dioxalone, because of its relatively high electron affinity. Also, both protection of the lithium metal and prevention of oxygen crossover to the anode are essential for minimizing electrolyte and anode decomposition.
科研通智能强力驱动
Strongly Powered by AbleSci AI