催化作用
石墨烯
氧化物
聚苯胺
退火(玻璃)
聚吡咯
氮气
活动中心
氨
材料科学
金属
无机化学
化学工程
化学
纳米技术
聚合物
聚合
有机化学
工程类
复合材料
作者
Linfei Lai,Jeffrey R. Potts,Da Zhan,Liang Wang,Chee Kok Poh,Chunhua Tang,Hao Gong,Zhongxiang Shen,Jianyi Lin,Rodney S. Ruoff
摘要
We present two different ways to fabricate nitrogen-doped graphene (N-graphene) and demonstrate its use as a metal-free catalyst to study the catalytic active center for the oxygen reduction reaction (ORR). N-graphene was produced by annealing of graphene oxide (G-O) under ammonia or by annealing of a N-containing polymer/reduced graphene oxide (RG-O) composite (polyaniline/RG-O or polypyrrole/RG-O). The effects of the N precursors and annealing temperature on the performance of the catalyst were investigated. The bonding state of the N atom was found to have a significant effect on the selectivity and catalytic activity for ORR. Annealing of G-O with ammonia preferentially formed graphitic N and pyridinic N centers, while annealing of polyaniline/RG-O and polypyrrole/RG-O tended to generate pyridinic and pyrrolic N moieties, respectively. Most importantly, the electrocatalytic activity of the catalyst was found to be dependent on the graphitic N content which determined the limiting current density, while the pyridinic N content improved the onset potential for ORR. However, the total N content in the graphene-based non-precious metal catalyst does not play an important role in the ORR process.
科研通智能强力驱动
Strongly Powered by AbleSci AI