Improving AutoDock Vina Using Random Forest: The Growing Accuracy of Binding Affinity Prediction by the Effective Exploitation of Larger Data Sets

随机森林 机器学习 计算机科学 人工智能 自动停靠 概括性 水准点(测量) 软件 回归 排名(信息检索) 数据挖掘 化学 数学 统计 程序设计语言 基因 生物化学 地理 心理治疗师 生物信息学 心理学 大地测量学
作者
Hongjian Li,Kwong‐Sak Leung,Man‐Hon Wong,Pedro J. Ballester
出处
期刊:Molecular Informatics [Wiley]
卷期号:34 (2-3): 115-126 被引量:226
标识
DOI:10.1002/minf.201400132
摘要

Abstract There is a growing body of evidence showing that machine learning regression results in more accurate structure‐based prediction of protein‐ligand binding affinity. Docking methods that aim at optimizing the affinity of ligands for a target rely on how accurate their predicted ranking is. However, despite their proven advantages, machine‐learning scoring functions are still not widely applied. This seems to be due to insufficient understanding of their properties and the lack of user‐friendly software implementing them. Here we present a study where the accuracy of AutoDock Vina, arguably the most commonly‐used docking software, is strongly improved by following a machine learning approach. We also analyse the factors that are responsible for this improvement and their generality. Most importantly, with the help of a proposed benchmark, we demonstrate that this improvement will be larger as more data becomes available for training Random Forest models, as regression models implying additive functional forms do not improve with more training data. We discuss how the latter opens the door to new opportunities in scoring function development. In order to facilitate the translation of this advance to enhance structure‐based molecular design, we provide software to directly re‐score Vina‐generated poses and thus strongly improve their predicted binding affinity. The software is available at http://istar.cse.cuhk.edu.hk/rf‐score‐3.tgz and http://crcm. marseille.inserm.fr/fileadmin/rf‐score‐3.tgz
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助沙糖桔采纳,获得10
刚刚
小白菜阿唐完成签到,获得积分10
刚刚
seven给seven的求助进行了留言
1秒前
西灵壹完成签到,获得积分10
1秒前
Kakoala完成签到,获得积分10
1秒前
为Zn发电完成签到,获得积分10
2秒前
LELE发布了新的文献求助10
2秒前
2秒前
科研牛马发布了新的文献求助10
2秒前
诗谙发布了新的文献求助10
2秒前
3秒前
万事胜意发布了新的文献求助10
3秒前
3秒前
Heisenberg完成签到,获得积分0
3秒前
微微发布了新的文献求助10
3秒前
3秒前
云不暇完成签到 ,获得积分10
3秒前
昀松完成签到,获得积分10
4秒前
Jo完成签到,获得积分10
4秒前
JiangHb完成签到,获得积分10
5秒前
情怀应助喜悦又菡采纳,获得10
5秒前
阿强发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
CipherSage应助大海123采纳,获得10
7秒前
杳鸢应助LELE采纳,获得10
7秒前
爆米花应助一只壁虎采纳,获得10
7秒前
WXZ发布了新的文献求助30
8秒前
朴实觅波发布了新的文献求助10
8秒前
研友_LOKqmL发布了新的文献求助80
8秒前
丘比特应助Calvin采纳,获得10
8秒前
研友_VZG7GZ应助诗谙采纳,获得10
9秒前
9秒前
吉爽完成签到,获得积分20
10秒前
11秒前
菜菜不是一盆菜完成签到,获得积分10
11秒前
郭盾发布了新的文献求助10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951455
求助须知:如何正确求助?哪些是违规求助? 3496905
关于积分的说明 11085004
捐赠科研通 3227298
什么是DOI,文献DOI怎么找? 1784400
邀请新用户注册赠送积分活动 868422
科研通“疑难数据库(出版商)”最低求助积分说明 801122