生物
瘦素
外显子
鸽子
小鼠苗条素受体
基因
肽序列
内科学
内分泌学
遗传学
政治学
医学
法学
肥胖
作者
Miriam Friedman‐Einat,Larry A. Cogburn,Sara Yosefi,Gideon Hen,Dmitry Shinder,Andrey Shirak,Eyal Seroussi
出处
期刊:Endocrinology
[The Endocrine Society]
日期:2014-04-23
卷期号:155 (9): 3376-3384
被引量:70
摘要
Leptin, the key regulator of mammalian energy balance, has been at the center of a great controversy in avian biology for the last 15 years since initial reports of a putative leptin gene (LEP) in chickens. Here, we characterize a novel LEP in rock dove (Columba livia) with low similarity of the predicted protein sequence (30% identity, 47% similarity) to the human ortholog. Searching the Sequence-Read-Archive database revealed leptin transcripts, in the dove's liver, with 2 noncoding exons preceding 2 coding exons. This unusual 4-exon structure was validated by sequencing of a GC-rich product (76% GC, 721 bp) amplified from liver RNA by RT-PCR. Sequence alignment of the dove leptin with orthologous leptins indicated that it consists of a leader peptide (21 amino acids; aa) followed by the mature protein (160 aa), which has a putative structure typical of 4-helical-bundle cytokines except that it is 12 aa longer than human leptin. Extra residues (10 aa) were located within the loop between 2 5'-helices, interrupting the amino acid motif that is conserved in tetrapods and considered essential for activation of leptin receptor (LEPR) but not for receptor binding per se. Quantitative RT-PCR of 11 tissues showed highest (P < .05) expression of LEP in the dove's liver, whereas the dove LEPR peaked (P < .01) in the pituitary. Both genes were prominently expressed in the gonads and at lower levels in tissues involved in mammalian leptin signaling (adipose; hypothalamus). A bioassay based on activation of the chicken LEPR in vitro showed leptin activity in the dove's circulation, suggesting that dove LEP encodes an active protein, despite the interrupted loop motif. Providing tools to study energy-balance control at an evolutionary perspective, our original demonstration of leptin signaling in dove predicts a more ancient role of leptin in growth and reproduction in birds, rather than appetite control.
科研通智能强力驱动
Strongly Powered by AbleSci AI