Gear wear monitoring by modulation signal bispectrum based on motor current signal analysis

双谱 信号(编程语言) 调制(音乐) 功率(物理) 工程类 信号处理 过程(计算) 状态监测 计算机科学 扭矩 传输(电信) 汽车工程 振动 光谱密度 声学 电子工程 电气工程 数字信号处理 物理 操作系统 热力学 程序设计语言 电信 量子力学
作者
Ruiliang Zhang,Fengshou Gu,Mansaf Haram,Tie Wang,Andrew Ball
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:94: 202-213 被引量:96
标识
DOI:10.1016/j.ymssp.2017.02.037
摘要

Gears are important mechanical components for power transmissions. Tooth wear is one of the most common failure modes, which can present throughout a gear’s lifetime. It is significant to accurately monitor gear wear progression in order to take timely predictive maintenances. Motor current signature analysis (MCSA) is an effective and non-intrusive approach which is able to monitor faults from both electrical and mechanical systems. However, little research has been reported in monitoring the gear wear and estimating its severity based on MCSA. This paper presents a novel gear wear monitoring method through a modulation signal bispectrum based motor current signal analysis (MSB-MCSA). For a steady gear transmission, it is inevitable to exist load and speed oscillations due to various errors including wears. These oscillations can induce small modulations in the current signals of the driving motor. MSB is particularly effective in characterising such small modulation signals. Based on these understandings, the monitoring process was implemented based on the current signals from a run-to-failure test of an industrial two stages helical gearbox under a moderate accelerated fatigue process. At the initial operation of the test, MSB analysis results showed that the peak values at the bifrequencies of gear rotations and the power supply can be effective monitoring features for identifying faulty gears and wear severity as they exhibit agreeable changes with gear loads. A monotonically increasing trend established by these features allows a clear indication of the gear wear progression. The dismantle inspection at 477 h of operation, made when one of the monitored features is about 123% higher than its baseline, has found that there are severe scuffing wear marks on a number of tooth surfaces on the driving gear, showing that the gear endures a gradual wear process during its long test operation. Therefore, it is affirmed that the MSB-MSCA approach proposed is reliable and accurate for monitoring gear wear deterioration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助ljf采纳,获得10
刚刚
1秒前
慕青应助zhangmazi采纳,获得10
1秒前
1秒前
眯眯眼的黎昕完成签到 ,获得积分10
2秒前
tly发布了新的文献求助10
2秒前
赘婿应助x5kyi采纳,获得10
3秒前
3秒前
3秒前
Strongly完成签到,获得积分10
4秒前
4秒前
5秒前
6秒前
6秒前
烤肠发布了新的文献求助10
7秒前
tobino1发布了新的文献求助10
7秒前
8秒前
8秒前
zzzdx发布了新的文献求助10
8秒前
trophozoite发布了新的文献求助10
9秒前
情怀应助烤肠采纳,获得10
12秒前
ZZK发布了新的文献求助10
12秒前
Tina发布了新的文献求助10
13秒前
mwiyi完成签到,获得积分10
13秒前
13秒前
慧慧发布了新的文献求助10
13秒前
13秒前
Kingzd完成签到,获得积分10
14秒前
15秒前
16秒前
17秒前
tly完成签到,获得积分10
17秒前
魔王小豆包完成签到,获得积分10
18秒前
18秒前
19秒前
舒心的紫雪完成签到 ,获得积分10
20秒前
22秒前
一粒苹果酒完成签到,获得积分10
22秒前
23秒前
阿西吧完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5354788
求助须知:如何正确求助?哪些是违规求助? 4486810
关于积分的说明 13967969
捐赠科研通 4387444
什么是DOI,文献DOI怎么找? 2410377
邀请新用户注册赠送积分活动 1402786
关于科研通互助平台的介绍 1376566