Gear wear monitoring by modulation signal bispectrum based on motor current signal analysis

双谱 信号(编程语言) 调制(音乐) 功率(物理) 工程类 信号处理 过程(计算) 状态监测 计算机科学 扭矩 传输(电信) 汽车工程 振动 光谱密度 声学 电子工程 电气工程 数字信号处理 物理 操作系统 热力学 程序设计语言 电信 量子力学
作者
Ruiliang Zhang,Fengshou Gu,Mansaf Haram,Tie Wang,Andrew Ball
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:94: 202-213 被引量:96
标识
DOI:10.1016/j.ymssp.2017.02.037
摘要

Gears are important mechanical components for power transmissions. Tooth wear is one of the most common failure modes, which can present throughout a gear’s lifetime. It is significant to accurately monitor gear wear progression in order to take timely predictive maintenances. Motor current signature analysis (MCSA) is an effective and non-intrusive approach which is able to monitor faults from both electrical and mechanical systems. However, little research has been reported in monitoring the gear wear and estimating its severity based on MCSA. This paper presents a novel gear wear monitoring method through a modulation signal bispectrum based motor current signal analysis (MSB-MCSA). For a steady gear transmission, it is inevitable to exist load and speed oscillations due to various errors including wears. These oscillations can induce small modulations in the current signals of the driving motor. MSB is particularly effective in characterising such small modulation signals. Based on these understandings, the monitoring process was implemented based on the current signals from a run-to-failure test of an industrial two stages helical gearbox under a moderate accelerated fatigue process. At the initial operation of the test, MSB analysis results showed that the peak values at the bifrequencies of gear rotations and the power supply can be effective monitoring features for identifying faulty gears and wear severity as they exhibit agreeable changes with gear loads. A monotonically increasing trend established by these features allows a clear indication of the gear wear progression. The dismantle inspection at 477 h of operation, made when one of the monitored features is about 123% higher than its baseline, has found that there are severe scuffing wear marks on a number of tooth surfaces on the driving gear, showing that the gear endures a gradual wear process during its long test operation. Therefore, it is affirmed that the MSB-MSCA approach proposed is reliable and accurate for monitoring gear wear deterioration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bawei发布了新的文献求助10
刚刚
Angel完成签到,获得积分10
刚刚
刚刚
做最好的自己完成签到,获得积分10
刚刚
wanci应助Weilang采纳,获得10
1秒前
Seiswan完成签到,获得积分10
1秒前
chen发布了新的文献求助10
1秒前
情怀应助旺仔小馒头采纳,获得10
1秒前
2秒前
冷酷莫茗发布了新的文献求助10
2秒前
wuyany33发布了新的文献求助10
2秒前
852应助满意的芸采纳,获得10
2秒前
melo完成签到,获得积分10
3秒前
ca0ca0完成签到,获得积分10
3秒前
3秒前
111发布了新的文献求助10
4秒前
大知闲闲完成签到 ,获得积分10
4秒前
李*杰发布了新的文献求助10
4秒前
苗条的孤容完成签到,获得积分10
4秒前
xuhang发布了新的文献求助10
4秒前
4秒前
TT发布了新的文献求助10
4秒前
smirys完成签到,获得积分10
5秒前
5秒前
xc完成签到,获得积分10
5秒前
喜悦的难摧完成签到,获得积分10
5秒前
shuide发布了新的文献求助10
5秒前
学习完成签到,获得积分10
5秒前
cc完成签到,获得积分20
5秒前
5秒前
田様应助zwenng采纳,获得10
5秒前
忐忑的蛋糕完成签到,获得积分10
5秒前
ttxxcdx完成签到 ,获得积分10
6秒前
球球发布了新的文献求助10
6秒前
6秒前
dyvdyvaass完成签到 ,获得积分10
6秒前
勤恳的雪卉完成签到,获得积分10
7秒前
jeeze完成签到,获得积分10
7秒前
MichaelQin完成签到,获得积分10
7秒前
安容完成签到 ,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645586
求助须知:如何正确求助?哪些是违规求助? 4769324
关于积分的说明 15030847
捐赠科研通 4804312
什么是DOI,文献DOI怎么找? 2568910
邀请新用户注册赠送积分活动 1526066
关于科研通互助平台的介绍 1485676