Gear wear monitoring by modulation signal bispectrum based on motor current signal analysis

双谱 信号(编程语言) 调制(音乐) 功率(物理) 工程类 信号处理 过程(计算) 状态监测 计算机科学 扭矩 传输(电信) 汽车工程 振动 光谱密度 声学 电子工程 电气工程 数字信号处理 物理 操作系统 热力学 程序设计语言 电信 量子力学
作者
Ruiliang Zhang,Fengshou Gu,Mansaf Haram,Tie Wang,Andrew Ball
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:94: 202-213 被引量:96
标识
DOI:10.1016/j.ymssp.2017.02.037
摘要

Gears are important mechanical components for power transmissions. Tooth wear is one of the most common failure modes, which can present throughout a gear’s lifetime. It is significant to accurately monitor gear wear progression in order to take timely predictive maintenances. Motor current signature analysis (MCSA) is an effective and non-intrusive approach which is able to monitor faults from both electrical and mechanical systems. However, little research has been reported in monitoring the gear wear and estimating its severity based on MCSA. This paper presents a novel gear wear monitoring method through a modulation signal bispectrum based motor current signal analysis (MSB-MCSA). For a steady gear transmission, it is inevitable to exist load and speed oscillations due to various errors including wears. These oscillations can induce small modulations in the current signals of the driving motor. MSB is particularly effective in characterising such small modulation signals. Based on these understandings, the monitoring process was implemented based on the current signals from a run-to-failure test of an industrial two stages helical gearbox under a moderate accelerated fatigue process. At the initial operation of the test, MSB analysis results showed that the peak values at the bifrequencies of gear rotations and the power supply can be effective monitoring features for identifying faulty gears and wear severity as they exhibit agreeable changes with gear loads. A monotonically increasing trend established by these features allows a clear indication of the gear wear progression. The dismantle inspection at 477 h of operation, made when one of the monitored features is about 123% higher than its baseline, has found that there are severe scuffing wear marks on a number of tooth surfaces on the driving gear, showing that the gear endures a gradual wear process during its long test operation. Therefore, it is affirmed that the MSB-MSCA approach proposed is reliable and accurate for monitoring gear wear deterioration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ink发布了新的文献求助10
1秒前
hyper3than发布了新的文献求助10
1秒前
1秒前
寒冷的云朵完成签到,获得积分10
1秒前
2秒前
2秒前
biu发布了新的文献求助10
2秒前
3秒前
xu发布了新的文献求助10
3秒前
落寞的萤发布了新的文献求助10
4秒前
youuuu完成签到 ,获得积分10
4秒前
4秒前
陈璇完成签到,获得积分10
4秒前
5秒前
望居于夜空完成签到,获得积分10
5秒前
可靠的难胜完成签到,获得积分10
6秒前
6秒前
6秒前
tongttt发布了新的文献求助10
6秒前
killler完成签到,获得积分10
6秒前
6秒前
一二三完成签到,获得积分10
7秒前
7秒前
Dotson发布了新的文献求助10
8秒前
小马甲应助Honahlee采纳,获得10
8秒前
可爱的函函应助jl采纳,获得10
8秒前
五六七完成签到 ,获得积分10
8秒前
科研渣渣发布了新的文献求助10
8秒前
8秒前
东winter发布了新的文献求助10
9秒前
9秒前
yuqin完成签到,获得积分10
10秒前
ji发布了新的文献求助10
10秒前
10秒前
科研通AI6应助孤独千愁采纳,获得10
11秒前
清脆映真发布了新的文献求助10
11秒前
Irena完成签到,获得积分10
11秒前
11秒前
600完成签到,获得积分10
11秒前
滴滴哒发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836