Thermography and machine learning techniques for tomato freshness prediction

热成像 支持向量机 机器学习 人工神经网络 人工智能 计算机科学 环境科学 数学 红外线的 遥感 光学 地理 物理
作者
Jing Xie,Sheng‐Jen Hsieh,Hongjin Wang,Zuojun Tan
出处
期刊:Applied optics [The Optical Society]
卷期号:55 (34): D131-D131
标识
DOI:10.1364/ao.55.00d131
摘要

The United States and China are the world's leading tomato producers. Tomatoes account for over $2 billion annually in farm sales in the U.S. Tomatoes also rank as the world's 8th most valuable agricultural product, valued at $58 billion dollars annually, and quality is highly prized. Nondestructive technologies, such as optical inspection and near-infrared spectrum analysis, have been developed to estimate tomato freshness (also known as grades in USDA parlance). However, determining the freshness of tomatoes is still an open problem. This research (1) illustrates the principle of theory on why thermography might be able to reveal the internal state of the tomatoes and (2) investigates the application of machine learning techniques-artificial neural networks (ANNs) and support vector machines (SVMs)-in combination with transient step heating, and thermography for freshness prediction, which refers to how soon the tomatoes will decay. Infrared images were captured at a sampling frequency of 1 Hz during 40 s of heating followed by 160 s of cooling. The temperatures of the acquired images were plotted. Regions with higher temperature differences between fresh and less fresh (rotten within three days) tomatoes of approximately uniform size and shape were used as the input nodes for ANN and SVM models. The ANN model built using heating and cooling data was relatively optimal. The overall regression coefficient was 0.99. These results suggest that a combination of infrared thermal imaging and ANN modeling methods can be used to predict tomato freshness with higher accuracy than SVM models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
健壮丹妗完成签到 ,获得积分10
4秒前
JamesPei应助Dester采纳,获得10
5秒前
1212发布了新的文献求助10
5秒前
Chen_Liu完成签到,获得积分10
7秒前
王小海111发布了新的文献求助10
8秒前
小二郎应助科研通管家采纳,获得20
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
今后应助科研通管家采纳,获得10
8秒前
Singularity应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
Singularity应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
9秒前
Ava应助科研通管家采纳,获得10
9秒前
Singularity应助科研通管家采纳,获得10
9秒前
科研八戒应助科研通管家采纳,获得10
9秒前
10秒前
12秒前
17秒前
Dester发布了新的文献求助10
18秒前
20秒前
sowhat完成签到 ,获得积分10
20秒前
藏续发布了新的文献求助10
21秒前
细腻慕儿完成签到 ,获得积分10
21秒前
yumeng完成签到,获得积分10
24秒前
sxl发布了新的文献求助10
24秒前
冬冬应助LYDZ2采纳,获得10
25秒前
温暖寻雪发布了新的文献求助10
25秒前
M1982发布了新的文献求助10
27秒前
30秒前
32秒前
32秒前
乐乐应助发疯研究生采纳,获得30
39秒前
小蘑菇应助水论文行者采纳,获得10
39秒前
orixero应助KitasanHN采纳,获得10
39秒前
有魅力荟发布了新的文献求助10
43秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316201
求助须知:如何正确求助?哪些是违规求助? 2947786
关于积分的说明 8538590
捐赠科研通 2623888
什么是DOI,文献DOI怎么找? 1435612
科研通“疑难数据库(出版商)”最低求助积分说明 665632
邀请新用户注册赠送积分活动 651457