已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Thermography and machine learning techniques for tomato freshness prediction

热成像 支持向量机 机器学习 人工神经网络 人工智能 计算机科学 环境科学 数学 红外线的 遥感 光学 地理 物理
作者
Jing Xie,Sheng‐Jen Hsieh,Hongjin Wang,Zuojun Tan
出处
期刊:Applied optics [The Optical Society]
卷期号:55 (34): D131-D131 被引量:1
标识
DOI:10.1364/ao.55.00d131
摘要

The United States and China are the world's leading tomato producers. Tomatoes account for over $2 billion annually in farm sales in the U.S. Tomatoes also rank as the world's 8th most valuable agricultural product, valued at $58 billion dollars annually, and quality is highly prized. Nondestructive technologies, such as optical inspection and near-infrared spectrum analysis, have been developed to estimate tomato freshness (also known as grades in USDA parlance). However, determining the freshness of tomatoes is still an open problem. This research (1) illustrates the principle of theory on why thermography might be able to reveal the internal state of the tomatoes and (2) investigates the application of machine learning techniques-artificial neural networks (ANNs) and support vector machines (SVMs)-in combination with transient step heating, and thermography for freshness prediction, which refers to how soon the tomatoes will decay. Infrared images were captured at a sampling frequency of 1 Hz during 40 s of heating followed by 160 s of cooling. The temperatures of the acquired images were plotted. Regions with higher temperature differences between fresh and less fresh (rotten within three days) tomatoes of approximately uniform size and shape were used as the input nodes for ANN and SVM models. The ANN model built using heating and cooling data was relatively optimal. The overall regression coefficient was 0.99. These results suggest that a combination of infrared thermal imaging and ANN modeling methods can be used to predict tomato freshness with higher accuracy than SVM models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助szj采纳,获得10
刚刚
刚刚
搜集达人应助szj采纳,获得10
刚刚
CodeCraft应助szj采纳,获得30
刚刚
小马甲应助szj采纳,获得10
刚刚
科研通AI6应助szj采纳,获得10
刚刚
夏紫儿完成签到 ,获得积分10
1秒前
嗯_好发布了新的文献求助10
2秒前
5秒前
Hello应助CXS采纳,获得10
5秒前
5秒前
Akim应助没有昵称采纳,获得10
6秒前
czh发布了新的文献求助10
6秒前
kexi发布了新的文献求助10
9秒前
yys完成签到 ,获得积分10
9秒前
坦率珍完成签到,获得积分10
9秒前
小鱼发布了新的文献求助20
10秒前
威武天抒发布了新的文献求助10
10秒前
11秒前
夜枫完成签到 ,获得积分10
13秒前
慕青应助szj采纳,获得10
14秒前
CipherSage应助szj采纳,获得10
14秒前
可爱的函函应助szj采纳,获得10
14秒前
小马甲应助szj采纳,获得10
14秒前
Owen应助szj采纳,获得10
14秒前
大个应助szj采纳,获得10
14秒前
Ll完成签到 ,获得积分10
14秒前
小蘑菇应助szj采纳,获得10
14秒前
赘婿应助szj采纳,获得30
14秒前
CipherSage应助szj采纳,获得10
14秒前
田様应助szj采纳,获得30
14秒前
Carrie完成签到,获得积分20
15秒前
typpppp完成签到,获得积分10
16秒前
18秒前
18秒前
凤梨罐头吞噬者完成签到,获得积分10
18秒前
张龙雨发布了新的文献求助10
19秒前
22秒前
737发布了新的文献求助10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5197265
求助须知:如何正确求助?哪些是违规求助? 4378603
关于积分的说明 13636598
捐赠科研通 4234374
什么是DOI,文献DOI怎么找? 2322660
邀请新用户注册赠送积分活动 1320792
关于科研通互助平台的介绍 1271422