Thermography and machine learning techniques for tomato freshness prediction

热成像 支持向量机 机器学习 人工神经网络 人工智能 计算机科学 环境科学 数学 红外线的 遥感 光学 地理 物理
作者
Jing Xie,Sheng‐Jen Hsieh,Hongjin Wang,Zuojun Tan
出处
期刊:Applied optics [The Optical Society]
卷期号:55 (34): D131-D131
标识
DOI:10.1364/ao.55.00d131
摘要

The United States and China are the world's leading tomato producers. Tomatoes account for over $2 billion annually in farm sales in the U.S. Tomatoes also rank as the world's 8th most valuable agricultural product, valued at $58 billion dollars annually, and quality is highly prized. Nondestructive technologies, such as optical inspection and near-infrared spectrum analysis, have been developed to estimate tomato freshness (also known as grades in USDA parlance). However, determining the freshness of tomatoes is still an open problem. This research (1) illustrates the principle of theory on why thermography might be able to reveal the internal state of the tomatoes and (2) investigates the application of machine learning techniques-artificial neural networks (ANNs) and support vector machines (SVMs)-in combination with transient step heating, and thermography for freshness prediction, which refers to how soon the tomatoes will decay. Infrared images were captured at a sampling frequency of 1 Hz during 40 s of heating followed by 160 s of cooling. The temperatures of the acquired images were plotted. Regions with higher temperature differences between fresh and less fresh (rotten within three days) tomatoes of approximately uniform size and shape were used as the input nodes for ANN and SVM models. The ANN model built using heating and cooling data was relatively optimal. The overall regression coefficient was 0.99. These results suggest that a combination of infrared thermal imaging and ANN modeling methods can be used to predict tomato freshness with higher accuracy than SVM models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助科研通管家采纳,获得10
刚刚
wu8577应助科研通管家采纳,获得10
刚刚
刚刚
怎么说应助科研通管家采纳,获得10
刚刚
科目三应助科研通管家采纳,获得10
刚刚
刚刚
所所应助科研通管家采纳,获得30
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
yjj发布了新的文献求助10
1秒前
wanci应助科研通管家采纳,获得30
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
王王的苏应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
张爱学发布了新的文献求助10
1秒前
无花果应助涵泽采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得80
1秒前
2秒前
我是老大应助科研通管家采纳,获得20
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
CodeCraft应助郑郑郑幸运采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
趣乐多发布了新的文献求助60
2秒前
2秒前
Akim应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
gguc发布了新的文献求助10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
2秒前
wu8577应助科研通管家采纳,获得10
2秒前
结实的纹应助科研通管家采纳,获得50
3秒前
情怀应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961675
求助须知:如何正确求助?哪些是违规求助? 3507998
关于积分的说明 11139238
捐赠科研通 3240579
什么是DOI,文献DOI怎么找? 1791017
邀请新用户注册赠送积分活动 872696
科研通“疑难数据库(出版商)”最低求助积分说明 803326