推论
丰度(生态学)
计算机科学
表达式(计算机科学)
转录组
计算生物学
生物
特征(语言学)
基因表达
人工智能
基因
遗传学
语言学
哲学
程序设计语言
渔业
作者
Rob Patro,Geet Duggal,Michael I. Love,Rafael A. Irizarry,Carl Kingsford
出处
期刊:Nature Methods
[Springer Nature]
日期:2017-03-06
卷期号:14 (4): 417-419
被引量:8643
摘要
Salmon is a computational tool that uses sample-specific models and a dual-phase inference procedure to correct biases in RNA-seq data and rapidly quantify transcript abundances. We introduce Salmon, a lightweight method for quantifying transcript abundance from RNA–seq reads. Salmon combines a new dual-phase parallel inference algorithm and feature-rich bias models with an ultra-fast read mapping procedure. It is the first transcriptome-wide quantifier to correct for fragment GC-content bias, which, as we demonstrate here, substantially improves the accuracy of abundance estimates and the sensitivity of subsequent differential expression analysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI