EEGNet: A Compact Convolutional Network for EEG-based Brain-Computer Interfaces

接口(物质) 模式识别(心理学) 运动表象
作者
Vernon J. Lawhern,Amelia J. Solon,Nicholas R. Waytowich,Stephen M. Gordon,Chou P. Hung,Brent J. Lance
出处
期刊:arXiv: Learning 被引量:309
标识
DOI:10.1088/1741-2552/aace8c
摘要

Brain computer interfaces (BCI) enable direct communication with a computer, using neural activity as the control signal. This neural signal is generally chosen from a variety of well-studied electroencephalogram (EEG) signals. For a given BCI paradigm, feature extractors and classifiers are tailored to the distinct characteristics of its expected EEG control signal, limiting its application to that specific signal. Convolutional Neural Networks (CNNs), which have been used in computer vision and speech recognition, have successfully been applied to EEG-based BCIs; however, they have mainly been applied to single BCI paradigms and thus it remains unclear how these architectures generalize to other paradigms. Here, we ask if we can design a single CNN architecture to accurately classify EEG signals from different BCI paradigms, while simultaneously being as compact as possible. In this work we introduce EEGNet, a compact convolutional network for EEG-based BCIs. We introduce the use of depthwise and separable convolutions to construct an EEG-specific model which encapsulates well-known EEG feature extraction concepts for BCI. We compare EEGNet to current state-of-the-art approaches across four BCI paradigms: P300 visual-evoked potentials, error-related negativity responses (ERN), movement-related cortical potentials (MRCP), and sensory motor rhythms (SMR). We show that EEGNet generalizes across paradigms better than the reference algorithms when only limited training data is available. We demonstrate three different approaches to visualize the contents of a trained EEGNet model to enable interpretation of the learned features. Our results suggest that EEGNet is robust enough to learn a wide variety of interpretable features over a range of BCI tasks, suggesting that the observed performances were not due to artifact or noise sources in the data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YY发布了新的文献求助10
1秒前
yiqiu完成签到,获得积分10
1秒前
独孤幻月96应助Master_Ye采纳,获得10
1秒前
1秒前
pluto应助紫罗兰花海采纳,获得10
2秒前
2秒前
justin发布了新的文献求助10
2秒前
MH完成签到,获得积分10
2秒前
3秒前
无言已对完成签到,获得积分10
3秒前
CipherSage应助徐昊雯采纳,获得10
4秒前
西瓜发布了新的文献求助10
4秒前
Owen应助舒心的凝莲采纳,获得10
5秒前
mhq发布了新的文献求助50
5秒前
5秒前
YZZ完成签到,获得积分10
6秒前
6秒前
水木完成签到,获得积分10
6秒前
thuuu发布了新的文献求助10
6秒前
无言已对发布了新的文献求助10
6秒前
深情安青应助疯狂的麦咭采纳,获得10
7秒前
田様应助小小怪下士采纳,获得10
7秒前
7秒前
动人的雁枫完成签到 ,获得积分10
7秒前
情怀应助Christine采纳,获得30
9秒前
10秒前
nbing完成签到,获得积分10
10秒前
动人的雁枫关注了科研通微信公众号
11秒前
geoyuan完成签到,获得积分10
11秒前
11秒前
11秒前
PANGDA完成签到 ,获得积分10
12秒前
贾翔发布了新的文献求助10
12秒前
13秒前
小明明应助Master_Ye采纳,获得10
13秒前
英俊的铭应助可不采纳,获得10
14秒前
Garfield完成签到,获得积分10
14秒前
无聊的翠芙完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
可乐清欢发布了新的文献求助10
15秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646