已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

EEGNet: A Compact Convolutional Network for EEG-based Brain-Computer Interfaces

接口(物质) 模式识别(心理学) 运动表象
作者
Vernon J. Lawhern,Amelia J. Solon,Nicholas R. Waytowich,Stephen M. Gordon,Chou P. Hung,Brent J. Lance
出处
期刊:arXiv: Learning 被引量:309
标识
DOI:10.1088/1741-2552/aace8c
摘要

Brain computer interfaces (BCI) enable direct communication with a computer, using neural activity as the control signal. This neural signal is generally chosen from a variety of well-studied electroencephalogram (EEG) signals. For a given BCI paradigm, feature extractors and classifiers are tailored to the distinct characteristics of its expected EEG control signal, limiting its application to that specific signal. Convolutional Neural Networks (CNNs), which have been used in computer vision and speech recognition, have successfully been applied to EEG-based BCIs; however, they have mainly been applied to single BCI paradigms and thus it remains unclear how these architectures generalize to other paradigms. Here, we ask if we can design a single CNN architecture to accurately classify EEG signals from different BCI paradigms, while simultaneously being as compact as possible. In this work we introduce EEGNet, a compact convolutional network for EEG-based BCIs. We introduce the use of depthwise and separable convolutions to construct an EEG-specific model which encapsulates well-known EEG feature extraction concepts for BCI. We compare EEGNet to current state-of-the-art approaches across four BCI paradigms: P300 visual-evoked potentials, error-related negativity responses (ERN), movement-related cortical potentials (MRCP), and sensory motor rhythms (SMR). We show that EEGNet generalizes across paradigms better than the reference algorithms when only limited training data is available. We demonstrate three different approaches to visualize the contents of a trained EEGNet model to enable interpretation of the learned features. Our results suggest that EEGNet is robust enough to learn a wide variety of interpretable features over a range of BCI tasks, suggesting that the observed performances were not due to artifact or noise sources in the data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助Dester采纳,获得10
1秒前
wangli完成签到,获得积分10
2秒前
7秒前
Dester完成签到,获得积分20
11秒前
韩寒完成签到 ,获得积分10
12秒前
调皮万宝路完成签到,获得积分10
13秒前
DD完成签到 ,获得积分10
15秒前
NexusExplorer应助调皮万宝路采纳,获得10
16秒前
一方通行完成签到 ,获得积分10
16秒前
binol发布了新的文献求助20
17秒前
al完成签到 ,获得积分10
18秒前
ngg完成签到 ,获得积分10
19秒前
19秒前
兮豫发布了新的文献求助20
22秒前
24秒前
ytrewq完成签到 ,获得积分10
25秒前
25秒前
30秒前
binol完成签到,获得积分10
31秒前
13504544355完成签到 ,获得积分10
31秒前
31秒前
吴嘉俊完成签到 ,获得积分10
37秒前
38秒前
大模型应助smilexue采纳,获得10
43秒前
小超人完成签到 ,获得积分10
43秒前
隐形曼青应助科研通管家采纳,获得10
44秒前
44秒前
香蕉觅云应助科研通管家采纳,获得10
44秒前
淡定的玉米关注了科研通微信公众号
45秒前
超帅慕晴完成签到,获得积分10
45秒前
科目三应助陶醉大侠采纳,获得10
46秒前
47秒前
听闻墨笙完成签到 ,获得积分10
48秒前
Jing完成签到,获得积分10
50秒前
50秒前
fanshuji发布了新的文献求助10
53秒前
sdvsd完成签到,获得积分10
54秒前
啊建发布了新的文献求助10
54秒前
段月漪完成签到 ,获得积分10
57秒前
烟花应助啊建采纳,获得10
58秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164695
求助须知:如何正确求助?哪些是违规求助? 2815790
关于积分的说明 7910147
捐赠科研通 2475331
什么是DOI,文献DOI怎么找? 1318097
科研通“疑难数据库(出版商)”最低求助积分说明 632002
版权声明 602282