EEGNet: A Compact Convolutional Network for EEG-based Brain-Computer Interfaces

接口(物质) 模式识别(心理学) 运动表象
作者
Vernon J. Lawhern,Amelia J. Solon,Nicholas R. Waytowich,Stephen M. Gordon,Chou P. Hung,Brent J. Lance
出处
期刊:arXiv: Learning 被引量:309
标识
DOI:10.1088/1741-2552/aace8c
摘要

Brain computer interfaces (BCI) enable direct communication with a computer, using neural activity as the control signal. This neural signal is generally chosen from a variety of well-studied electroencephalogram (EEG) signals. For a given BCI paradigm, feature extractors and classifiers are tailored to the distinct characteristics of its expected EEG control signal, limiting its application to that specific signal. Convolutional Neural Networks (CNNs), which have been used in computer vision and speech recognition, have successfully been applied to EEG-based BCIs; however, they have mainly been applied to single BCI paradigms and thus it remains unclear how these architectures generalize to other paradigms. Here, we ask if we can design a single CNN architecture to accurately classify EEG signals from different BCI paradigms, while simultaneously being as compact as possible. In this work we introduce EEGNet, a compact convolutional network for EEG-based BCIs. We introduce the use of depthwise and separable convolutions to construct an EEG-specific model which encapsulates well-known EEG feature extraction concepts for BCI. We compare EEGNet to current state-of-the-art approaches across four BCI paradigms: P300 visual-evoked potentials, error-related negativity responses (ERN), movement-related cortical potentials (MRCP), and sensory motor rhythms (SMR). We show that EEGNet generalizes across paradigms better than the reference algorithms when only limited training data is available. We demonstrate three different approaches to visualize the contents of a trained EEGNet model to enable interpretation of the learned features. Our results suggest that EEGNet is robust enough to learn a wide variety of interpretable features over a range of BCI tasks, suggesting that the observed performances were not due to artifact or noise sources in the data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赫幼蓉完成签到,获得积分10
刚刚
刚刚
Rondab应助心杨采纳,获得10
刚刚
Moke发布了新的文献求助10
1秒前
苹果鸭子发布了新的文献求助10
2秒前
在水一方应助开心超人采纳,获得10
2秒前
两个我发布了新的文献求助10
3秒前
12345完成签到,获得积分10
3秒前
CC完成签到,获得积分10
3秒前
乌江上次完成签到,获得积分10
4秒前
所所应助木直采纳,获得30
7秒前
陈宇发布了新的文献求助10
7秒前
bluueboom完成签到,获得积分20
8秒前
追寻冰淇淋给yang123的求助进行了留言
8秒前
9秒前
顾矜应助西灵壹采纳,获得10
10秒前
田様应助恬恬采纳,获得10
10秒前
山茶完成签到,获得积分20
12秒前
12秒前
隐形曼青应助猪猪hero采纳,获得10
12秒前
wangliang0329完成签到,获得积分10
12秒前
呐呐呐完成签到 ,获得积分10
13秒前
13秒前
13秒前
852应助龙韵采纳,获得10
13秒前
情怀应助CRUISE采纳,获得10
14秒前
dingding发布了新的文献求助30
16秒前
WJ发布了新的文献求助10
16秒前
16秒前
16秒前
刘爽应助Xe采纳,获得10
17秒前
xyx发布了新的文献求助20
17秒前
18秒前
核桃应助jie采纳,获得10
18秒前
18秒前
18秒前
Fine完成签到,获得积分10
18秒前
19秒前
19秒前
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954873
求助须知:如何正确求助?哪些是违规求助? 3500946
关于积分的说明 11101499
捐赠科研通 3231364
什么是DOI,文献DOI怎么找? 1786402
邀请新用户注册赠送积分活动 870037
科研通“疑难数据库(出版商)”最低求助积分说明 801771