亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

EEGNet: A Compact Convolutional Network for EEG-based Brain-Computer Interfaces

接口(物质) 模式识别(心理学) 运动表象
作者
Vernon J. Lawhern,Amelia J. Solon,Nicholas R. Waytowich,Stephen M. Gordon,Chou P. Hung,Brent J. Lance
出处
期刊:arXiv: Learning 被引量:309
标识
DOI:10.1088/1741-2552/aace8c
摘要

Brain computer interfaces (BCI) enable direct communication with a computer, using neural activity as the control signal. This neural signal is generally chosen from a variety of well-studied electroencephalogram (EEG) signals. For a given BCI paradigm, feature extractors and classifiers are tailored to the distinct characteristics of its expected EEG control signal, limiting its application to that specific signal. Convolutional Neural Networks (CNNs), which have been used in computer vision and speech recognition, have successfully been applied to EEG-based BCIs; however, they have mainly been applied to single BCI paradigms and thus it remains unclear how these architectures generalize to other paradigms. Here, we ask if we can design a single CNN architecture to accurately classify EEG signals from different BCI paradigms, while simultaneously being as compact as possible. In this work we introduce EEGNet, a compact convolutional network for EEG-based BCIs. We introduce the use of depthwise and separable convolutions to construct an EEG-specific model which encapsulates well-known EEG feature extraction concepts for BCI. We compare EEGNet to current state-of-the-art approaches across four BCI paradigms: P300 visual-evoked potentials, error-related negativity responses (ERN), movement-related cortical potentials (MRCP), and sensory motor rhythms (SMR). We show that EEGNet generalizes across paradigms better than the reference algorithms when only limited training data is available. We demonstrate three different approaches to visualize the contents of a trained EEGNet model to enable interpretation of the learned features. Our results suggest that EEGNet is robust enough to learn a wide variety of interpretable features over a range of BCI tasks, suggesting that the observed performances were not due to artifact or noise sources in the data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jia完成签到 ,获得积分10
2秒前
可爱的柜子完成签到,获得积分10
4秒前
30秒前
1分钟前
1分钟前
科研通AI5应助可爱的柜子采纳,获得10
1分钟前
无极2023完成签到 ,获得积分0
1分钟前
Hello应助科研通管家采纳,获得10
1分钟前
1分钟前
Reyyyy发布了新的文献求助30
1分钟前
2分钟前
2分钟前
李健应助可爱的柜子采纳,获得10
2分钟前
3分钟前
Lucas应助迷人的冥王星采纳,获得10
3分钟前
qy关注了科研通微信公众号
3分钟前
3分钟前
qy发布了新的文献求助10
3分钟前
隐形曼青应助我喜欢下雪采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
KYT完成签到 ,获得积分10
4分钟前
qqq完成签到,获得积分10
4分钟前
4分钟前
XXXX完成签到,获得积分10
5分钟前
5分钟前
汉堡包应助科研通管家采纳,获得10
5分钟前
俭朴的乐巧完成签到 ,获得积分10
5分钟前
XXXX发布了新的文献求助20
5分钟前
爆米花应助健忘的幻梅采纳,获得10
5分钟前
莘莘发布了新的文献求助10
5分钟前
pc完成签到 ,获得积分20
5分钟前
5分钟前
6分钟前
6分钟前
twk发布了新的文献求助10
6分钟前
6分钟前
6分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3746093
求助须知:如何正确求助?哪些是违规求助? 3288998
关于积分的说明 10061615
捐赠科研通 3005242
什么是DOI,文献DOI怎么找? 1650144
邀请新用户注册赠送积分活动 785740
科研通“疑难数据库(出版商)”最低求助积分说明 751242