Hydrogen-Storage Property Enhancement of Magnesium Hydride by Nickel Addition via Reactive Mechanical Grinding

氢气储存 材料科学 氢化镁 氢化物 研磨 冶金 化学工程 无机化学 有机化学 化学 金属 工程类 合金
作者
Myoung Youp Song,Young Jun Kwak,Seungho Lee,Hye Ryoung Park
出处
期刊:Korean Journal of Metals and Materials [The Korean Institute of Metals and Materials]
卷期号:51 (8): 607-613 被引量:7
标识
DOI:10.3365/kjmm.2013.51.8.607
摘要

In this work, MgH2 was employed as a starting material rather than Mg. Samples with compositions of 94 wt% MgH2-6 wt% Ni and 85 wt% MgH2-15 wt% Ni were prepared by reactive mechanical grinding. They were named MgH2-6Ni and MgH2-15Ni, respectively. Their hydriding and dehydriding properties were then examined and compared. The activation of MgH2-6Ni and MgH2-15Ni was completed after just the first hydriding (under 12 bar H2)-dehydriding (in vacuum) cycle at 573 K. MgH2-6Ni after reactive mechanical grinding has a larger specific area and a slightly smaller mean particle size (37㎡/g, 1.22 μm) than MgH2-15Ni after reactive mechanical grinding (30㎡/g, 1.24 μm). The activated MgH2-15Ni has slightly lower hydriding rates and a smaller quantity of hydrogen absorbed for 60 min at 573 K under 12 bar H2 than MgH2-6Ni. At 573 K under 1.0 bar H2, the activated MgH2-6Ni at first had a higher dehydriding rate than the activated MgH2-15Ni; however, the activated MgH2-15Ni had higher dehydriding rates after approximately 10 min and a larger quantity of hydrogen desorbed for 60 min than the activated MgH2-6Ni. The decrease in particle size and creation of defects due to Ni addition via reactive mechanical grinding are considered to increase the hydriding and dehydriding rates of MgH2. (Received November 2, 2012)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
芝士发布了新的文献求助10
1秒前
橘子发布了新的文献求助10
2秒前
2秒前
2秒前
晨曦发布了新的文献求助10
3秒前
3秒前
kobiy完成签到 ,获得积分10
3秒前
wu完成签到 ,获得积分10
4秒前
蛋泥完成签到,获得积分10
4秒前
顾矜应助mingjie采纳,获得10
5秒前
zhaowenxian发布了新的文献求助10
5秒前
勤劳傲晴发布了新的文献求助10
6秒前
6秒前
橘子完成签到,获得积分10
8秒前
可耐的从安完成签到 ,获得积分10
9秒前
zho应助背后的诺言采纳,获得10
9秒前
粥粥完成签到,获得积分10
9秒前
10秒前
打打应助陈杰采纳,获得10
11秒前
充电宝应助柔弱凡松采纳,获得10
12秒前
Jasmine发布了新的文献求助10
13秒前
14秒前
14秒前
大气的秋完成签到,获得积分10
15秒前
桐桐应助BB采纳,获得10
15秒前
15秒前
15秒前
曙光完成签到,获得积分10
16秒前
16秒前
大方嵩发布了新的文献求助10
17秒前
陌路发布了新的文献求助20
17秒前
Muqi完成签到,获得积分10
17秒前
18秒前
marinemiao发布了新的文献求助10
19秒前
19秒前
丘比特应助wzxxxx采纳,获得10
20秒前
科研通AI5应助飘逸蘑菇采纳,获得10
20秒前
科研通AI2S应助cc采纳,获得10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794