对映体药物
生物催化
化学
热稳定性
环氧化物水解酶
羟基化
固定化酶
有机化学
核化学
催化作用
酶
对映选择合成
微粒体
离子液体
作者
Shi‐Lin Cao,Dongmei Yue,Xuehui Li,Thomas J. Smith,Ning Li,Min‐Hua Zong,Hong Wu,Yongzheng Ma,Wen‐Yong Lou
出处
期刊:ACS Sustainable Chemistry & Engineering
[American Chemical Society]
日期:2016-05-18
卷期号:4 (6): 3586-3595
被引量:179
标识
DOI:10.1021/acssuschemeng.6b00777
摘要
The nano-/microscale UiO-66-NH2 metal–organic framework (MOF) materials were successfully prepared with a uniform size of about 350–400 nm and structurally characterized. Soybean epoxide hydrolase (SEH), a useful hydrolase for synthesis of valuable vicinal diols, was for the first time efficiently immobilized onto the prepared UiO-66-NH2 MOF. The resulting novel nano-/microbiocatalyst SEH@UiO-66-NH2 manifested high SEH loading (87.3 mg/g) and enzyme activity recovery (88.0%). The novel SEH@UiO-66-NH2 greatly surpassed the free SEH with resepct to pH stability, thermostability, and tolerance to organic solvents. SEH@UiO-66-NH2 retained more than 17.6 U activity after 2 h of incubation at 45 °C, whereas free SEH maintained around 10.1 U activity under the same conditions. After storage at 4 °C for 4 weeks, the prepared SEH@UiO-66-NH2 still retained around 97.5% of its initial activity. The significant enhancements resulted from the increase of structural rigidity of SEH@UiO-66-NH2, which was demonstrated by the secondary structure analysis of the enzyme. The optimun pH and tempearture of SEH@UiO-66-NH2 were significantly superior to the corresponding levels of its free counterpart. Also, SEH@UiO-66-NH2 manifested markedly enhanced enzyme–substrate affinity and catalytic efficiency compared to free SEH, as supported by a lower apparent Km value (6.5 vs 19.2 mM) and an increased Vmax/Km value (8.0 × 10–3 vs 5.8 × 10–3 min–1), respectively. Furthermore, the as-prepared SEH@UiO-66-NH2, for the first time, was successfully applied as an efficient biocatalyst for the asymmetric hydrolysis of 1,2-epoxyoctane to (R)-1,2-octanediol in a novel deep eutectic solvent (DES) with a yield of around 41.4% and a product e.e. value of 81.2%. Remarkably, the nano-/microscale UiO-66-NH2 MOFs as novel enzyme support materials are promising for enzyme immobilization, and the prepared SEH@UiO-66-NH2 exhibited great potential for efficient biosynthesis of enantipure (R)-1,2-octanediol.
科研通智能强力驱动
Strongly Powered by AbleSci AI