催化作用
析氧
氧化物
过渡金属
化学物理
电化学
合理设计
氧气
化学
反应机理
过渡状态
机制(生物学)
化学工程
材料科学
计算化学
纳米技术
物理化学
电极
物理
冶金
有机化学
工程类
量子力学
生物化学
作者
Rong Xi,Jules Parolin,Alexie M. Kolpak
出处
期刊:ACS Catalysis
[American Chemical Society]
日期:2016-01-14
卷期号:6 (2): 1153-1158
被引量:466
标识
DOI:10.1021/acscatal.5b02432
摘要
Rational design of efficient, stable oxygen evolution reaction (OER) catalysts is necessary for widespread adoption of electrochemical energy storage technologies. Achieving this goal requires elucidation of fundamental relationships between surface structure and reaction mechanism. Here we address this issue using ab initio computations to determine the surface structure and OER mechanism for LaNiO3, a perovksite oxide that exhibits high activity but low stability. We find a new OER mechanism in which lattice oxygen participation via reversible formation of surface oxygen vacancies is critical. We show that this mechanism has a lower reaction barrier compared to the generally proposed mechanism, leading to improved agreement with experimental data. Extending the study to La1–xSrxBO3 (B = transition metal), we demonstrate a transition to the lattice oxygen-mediated mechanism with decreasing catalyst stability. Our results suggest new approaches for next-generation catalysts design.
科研通智能强力驱动
Strongly Powered by AbleSci AI