Integrating Problem-Based Learning and Simulation

基于问题的学习 考试(生物学) 心理学 学习动机 数学教育 任务(项目管理) 生物 古生物学 经济 管理
作者
Young Sook Roh,Sang Suk Kim
出处
期刊:Cin-computers Informatics Nursing 卷期号:33 (7): 278-284 被引量:25
标识
DOI:10.1097/cin.0000000000000161
摘要

Previous research has suggested that a teaching strategy integrating problem-based learning and simulation may be superior to traditional lecture. The purpose of this study was to assess learner motivation and life skills before and after taking a course involving problem-based learning and simulation. The design used repeated measures with a convenience sample of 83 second-year nursing students who completed the integrated course. Data from a self-administered questionnaire measuring learner motivation and life skills were collected at pretest, post-problem-based learning, and post-simulation time points. Repeated-measures analysis of variance determined that the mean scores for total learner motivation (F=6.62, P=.003), communication (F=8.27, P<.001), problem solving (F=6.91, P=.001), and self-directed learning (F=4.45, P=.016) differed significantly between time points. Post hoc tests using the Bonferroni correction revealed that total learner motivation and total life skills significantly increased both from pretest to postsimulation and from post-problem-based learning test to postsimulation test. Subscales of learner motivation and life skills, intrinsic goal orientation, self-efficacy for learning and performance, problem-solving skills, and self-directed learning skills significantly increased both from pretest to postsimulation test and from post-problem-based learning test to post-simulation test. The results demonstrate that an integrating problem-based learning and simulation course elicits significant improvement in learner motivation and life skills. Simulation plus problem-based learning is more effective than problem-based learning alone at increasing intrinsic goal orientation, task value, self-efficacy for learning and performance, problem solving, and self-directed learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
派大星应助秋辞采纳,获得20
2秒前
mlle完成签到,获得积分10
2秒前
2秒前
2秒前
无限的紫蓝完成签到 ,获得积分10
3秒前
3秒前
Earnestlee完成签到,获得积分10
4秒前
艾米尼发布了新的文献求助10
5秒前
smile完成签到,获得积分10
5秒前
修勾完成签到,获得积分10
5秒前
个性南莲完成签到,获得积分10
5秒前
xiaowen完成签到,获得积分10
7秒前
灵零完成签到,获得积分10
8秒前
9秒前
wjd完成签到 ,获得积分10
10秒前
licheng完成签到,获得积分10
11秒前
小于完成签到,获得积分10
11秒前
11秒前
12秒前
米酒完成签到,获得积分10
12秒前
小马甲应助岁月浪翻了采纳,获得10
13秒前
zxt完成签到,获得积分10
14秒前
14秒前
15秒前
米酒发布了新的文献求助10
15秒前
16秒前
Zsl121完成签到,获得积分10
16秒前
小超人完成签到 ,获得积分10
16秒前
一帆锋顺完成签到,获得积分10
17秒前
W~舞发布了新的文献求助10
18秒前
简单的乐荷完成签到,获得积分10
19秒前
20秒前
橘子汽水完成签到,获得积分10
20秒前
chill完成签到,获得积分10
21秒前
WU完成签到,获得积分10
21秒前
22秒前
结实的老虎完成签到 ,获得积分10
22秒前
小章发布了新的文献求助10
22秒前
菜虚鲲完成签到 ,获得积分20
23秒前
高分求助中
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3121810
求助须知:如何正确求助?哪些是违规求助? 2772185
关于积分的说明 7711736
捐赠科研通 2427602
什么是DOI,文献DOI怎么找? 1289422
科研通“疑难数据库(出版商)”最低求助积分说明 621451
版权声明 600169