Arginine metabolism: nitric oxide and beyond

精氨酸酶 精氨琥珀酸合成酶 精氨酸 一氧化氮 胍丁胺 生物 一氧化氮合酶 精氨琥珀酸裂解酶 分解代谢 鸟氨酸 生物化学 鸟氨酸脱羧酶抗体 氨基酸 腐胺 内分泌学
作者
Guoyao Wu,Sidney M. Morris
出处
期刊:Biochemical Journal [Portland Press]
卷期号:336 (1): 1-17 被引量:2641
标识
DOI:10.1042/bj3360001
摘要

Arginine is one of the most versatile amino acids in animal cells, serving as a precursor for the synthesis not only of proteins but also of nitric oxide, urea, polyamines, proline, glutamate, creatine and agmatine. Of the enzymes that catalyse rate-controlling steps in arginine synthesis and catabolism, argininosuccinate synthase, the two arginase isoenzymes, the three nitric oxide synthase isoenzymes and arginine decarboxylase have been recognized in recent years as key factors in regulating newly identified aspects of arginine metabolism. In particular, changes in the activities of argininosuccinate synthase, the arginases, the inducible isoenzyme of nitric oxide synthase and also cationic amino acid transporters play major roles in determining the metabolic fates of arginine in health and disease, and recent studies have identified complex patterns of interaction among these enzymes. There is growing interest in the potential roles of the arginase isoenzymes as regulators of the synthesis of nitric oxide, polyamines, proline and glutamate. Physiological roles and relationships between the pathways of arginine synthesis and catabolism in vivo are complex and difficult to analyse, owing to compartmentalized expression of various enzymes at both organ (e.g. liver, small intestine and kidney) and subcellular (cytosol and mitochondria) levels, as well as to changes in expression during development and in response to diet, hormones and cytokines. The ongoing development of new cell lines and animal models using cDNA clones and genes for key arginine metabolic enzymes will provide new approaches more clearly elucidating the physiological roles of these enzymes. Correspondence may be addressed to either Dr. G. Wu (e-mail g-wu@tamu.edu) or Dr. S. M. Morris, Jr. (e-mail sid@hoffman.mgen.pitt.edu) at the addresses given.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
彭于晏应助岛L采纳,获得10
刚刚
Sylvia发布了新的文献求助50
刚刚
1秒前
1秒前
劲秉应助娜行采纳,获得10
1秒前
Elena发布了新的文献求助10
1秒前
yan完成签到,获得积分10
1秒前
樱桃肉肉丸完成签到,获得积分10
3秒前
3秒前
sycsyc完成签到,获得积分10
3秒前
晴天发布了新的文献求助10
4秒前
能干的小伙完成签到,获得积分10
4秒前
4秒前
哈人的猫发布了新的文献求助10
4秒前
wgcheng发布了新的文献求助10
5秒前
橘橘橘子皮完成签到 ,获得积分10
5秒前
十三完成签到,获得积分10
5秒前
Alalei809发布了新的文献求助10
5秒前
幸福遥完成签到,获得积分10
5秒前
合适觅山应助林屿溪采纳,获得10
5秒前
大方的蝴蝶完成签到 ,获得积分20
7秒前
7秒前
8秒前
李禾和完成签到,获得积分10
8秒前
科目三应助加油加油采纳,获得10
9秒前
糖糖发布了新的文献求助10
9秒前
Elena完成签到,获得积分10
9秒前
clmg发布了新的文献求助30
9秒前
9秒前
Silieze完成签到,获得积分10
9秒前
10秒前
10秒前
科研通AI5应助竹竹采纳,获得10
10秒前
枯木发布了新的文献求助10
11秒前
11秒前
11秒前
大胆班完成签到,获得积分10
11秒前
12秒前
落后乐萱发布了新的文献求助10
12秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479168
求助须知:如何正确求助?哪些是违规求助? 3069899
关于积分的说明 9115835
捐赠科研通 2761682
什么是DOI,文献DOI怎么找? 1515415
邀请新用户注册赠送积分活动 700906
科研通“疑难数据库(出版商)”最低求助积分说明 699931