Lift(数据挖掘)
三元运算
密度泛函理论
化学空间
计算机科学
参数空间
理论(学习稳定性)
领域(数学分析)
作文(语言)
空格(标点符号)
算法
统计物理学
机器学习
物理
药物发现
数学
化学
几何学
量子力学
生物化学
操作系统
语言学
数学分析
哲学
程序设计语言
作者
Bryce Meredig,Ankit Agrawal,Scott Kirklin,James E. Saal,Jeff W. Doak,Alexander Thompson,K. Zhang,Alok Choudhary,Chris Wolverton
标识
DOI:10.1103/physrevb.89.094104
摘要
Typically, computational screens for new materials sharply constrain the compositional search space, structural search space, or both, for the sake of tractability. To lift these constraints, we construct a machine learning model from a database of thousands of density functional theory (DFT) calculations. The resulting model can predict the thermodynamic stability of arbitrary compositions without any other input and with six orders of magnitude less computer time than DFT. We use this model to scan roughly 1.6 million candidate compositions for novel ternary compounds (${A}_{x}{B}_{y}{C}_{z}$), and predict 4500 new stable materials. Our method can be readily applied to other descriptors of interest to accelerate domain-specific materials discovery.
科研通智能强力驱动
Strongly Powered by AbleSci AI