Fully Squeezed Multiscale Inference Network for Fast and Accurate Saliency Detection in Optical Remote-Sensing Images

计算机科学 推论 突出 维数(图论) 特征(语言学) 卷积神经网络 人工智能 计算机视觉 模式识别(心理学) 数学 语言学 哲学 纯数学
作者
Kunye Shen,Xiaofei Zhou,Bin Wan,Ran Shi,Jiyong Zhang
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5 被引量:28
标识
DOI:10.1109/lgrs.2022.3161509
摘要

Recently, salient object detection in optical remote-sensing images (RSIs) has received more and more attention. To tackle the challenges of RSIs including large-scale variation of objects, cluttered background, irregular shape of objects, and big difference in illumination, the cutting-edge convolutional neural network (CNN)-based models are proposed and have achieved an encouraging performance. However, the performance of the top-level models usually depends on the large model size and high computational cost, which limits their practical applications. To remedy the issue, we introduce a fully squeezed multiscale (FSM) module to equip the entire network. Specifically, the FSM module squeezes the feature maps from high dimension to low dimension and introduces the multiscale strategy to endow the capability of feature characterization with different receptive fields and different contexts. Based on the FSM module, we build the FSM inference network (FSMI-Net) to pop-out salient objects from optical RSIs, which is with fewer parameters and fast inference speed. Particularly, the proposed FSMI-Net only contains 3.6M parameters, and its GPU running speed is about 28 fps for $384 \times 384$ inputs, which is superior to the existing saliency models targeting optical RSIs. Extensive comparisons are performed on two public optical RSIs datasets, and our FSMI-Net achieves comparable detection accuracy when compared with the state-of-the-art models, where our model realizes a balance between the computational cost and detection performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
懵懂的紫夏完成签到 ,获得积分10
刚刚
阿枫完成签到,获得积分10
刚刚
刚刚
myx完成签到,获得积分20
刚刚
1秒前
1秒前
123完成签到,获得积分10
1秒前
1秒前
2秒前
小马驹发布了新的文献求助10
2秒前
2秒前
banana发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
wanci应助奔跑的棉花采纳,获得10
3秒前
CEN完成签到,获得积分10
3秒前
天天快乐应助飘逸的静竹采纳,获得10
4秒前
4秒前
CodeCraft应助淑文采纳,获得10
4秒前
MM完成签到,获得积分10
4秒前
枯木逢春完成签到,获得积分20
5秒前
5秒前
xctdyl1992完成签到,获得积分10
6秒前
123完成签到 ,获得积分20
6秒前
Sg完成签到,获得积分10
6秒前
6秒前
烂漫成仁发布了新的文献求助10
7秒前
魔幻老黑发布了新的文献求助10
7秒前
7秒前
Stroeve发布了新的文献求助10
7秒前
7秒前
amber完成签到,获得积分10
7秒前
7秒前
SEM小菜鸡完成签到,获得积分10
7秒前
芋圆发布了新的文献求助10
8秒前
8秒前
枯木逢春发布了新的文献求助10
8秒前
爱大美发布了新的文献求助10
8秒前
8秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978852
求助须知:如何正确求助?哪些是违规求助? 3522781
关于积分的说明 11214876
捐赠科研通 3260258
什么是DOI,文献DOI怎么找? 1799853
邀请新用户注册赠送积分活动 878711
科研通“疑难数据库(出版商)”最低求助积分说明 807059