Fully Squeezed Multiscale Inference Network for Fast and Accurate Saliency Detection in Optical Remote-Sensing Images

计算机科学 推论 突出 维数(图论) 特征(语言学) 卷积神经网络 人工智能 计算机视觉 模式识别(心理学) 数学 语言学 哲学 纯数学
作者
Kunye Shen,Xiaofei Zhou,Bin Wan,Ran Shi,Jiyong Zhang
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5 被引量:28
标识
DOI:10.1109/lgrs.2022.3161509
摘要

Recently, salient object detection in optical remote-sensing images (RSIs) has received more and more attention. To tackle the challenges of RSIs including large-scale variation of objects, cluttered background, irregular shape of objects, and big difference in illumination, the cutting-edge convolutional neural network (CNN)-based models are proposed and have achieved an encouraging performance. However, the performance of the top-level models usually depends on the large model size and high computational cost, which limits their practical applications. To remedy the issue, we introduce a fully squeezed multiscale (FSM) module to equip the entire network. Specifically, the FSM module squeezes the feature maps from high dimension to low dimension and introduces the multiscale strategy to endow the capability of feature characterization with different receptive fields and different contexts. Based on the FSM module, we build the FSM inference network (FSMI-Net) to pop-out salient objects from optical RSIs, which is with fewer parameters and fast inference speed. Particularly, the proposed FSMI-Net only contains 3.6M parameters, and its GPU running speed is about 28 fps for $384 \times 384$ inputs, which is superior to the existing saliency models targeting optical RSIs. Extensive comparisons are performed on two public optical RSIs datasets, and our FSMI-Net achieves comparable detection accuracy when compared with the state-of-the-art models, where our model realizes a balance between the computational cost and detection performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
快乐寄风发布了新的文献求助10
2秒前
3秒前
迷路乌发布了新的文献求助10
3秒前
3秒前
从容藏花完成签到,获得积分10
4秒前
tonstark发布了新的文献求助10
5秒前
advance完成签到,获得积分0
5秒前
5秒前
科研通AI2S应助小巧问芙采纳,获得10
6秒前
6秒前
7秒前
7秒前
黎松发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
可达燊发布了新的文献求助10
8秒前
Akim应助重要的平灵采纳,获得10
8秒前
衡阳雁发布了新的文献求助10
8秒前
9秒前
9秒前
半颗糖完成签到,获得积分10
9秒前
Johnyang完成签到,获得积分10
9秒前
天天快乐应助hongping采纳,获得10
10秒前
10秒前
幽默不评发布了新的文献求助10
11秒前
月亮完成签到,获得积分10
11秒前
11秒前
赘婿应助三木采纳,获得10
11秒前
李健的小迷弟应助孙佳美采纳,获得10
11秒前
市不辣发布了新的文献求助10
11秒前
田様应助可达燊采纳,获得10
12秒前
Kane发布了新的文献求助10
12秒前
12秒前
12秒前
Johnyang发布了新的文献求助30
12秒前
chencai发布了新的文献求助10
13秒前
思源应助taoatao采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577090
求助须知:如何正确求助?哪些是违规求助? 4662349
关于积分的说明 14741219
捐赠科研通 4602974
什么是DOI,文献DOI怎么找? 2526066
邀请新用户注册赠送积分活动 1495974
关于科研通互助平台的介绍 1465478