A new multi-fidelity surrogate modelling method for engineering design based on neural network and transfer learning

忠诚 计算机科学 人工神经网络 机器学习 替代模型 人工智能 学习迁移 样品(材料) 数据挖掘 算法 色谱法 电信 化学
作者
Mushi Li,Zhao Liu,Li Huang,Ping Zhu
出处
期刊:Engineering Computations [Emerald (MCB UP)]
卷期号:39 (6): 2209-2230 被引量:12
标识
DOI:10.1108/ec-06-2021-0353
摘要

Purpose Compared with the low-fidelity model, the high-fidelity model has both the advantage of high accuracy, and the disadvantage of low efficiency and high cost. A series of multi-fidelity surrogate modelling method were developed to give full play to the respective advantages of both low-fidelity and high-fidelity models. However, most multi-fidelity surrogate modelling methods are sensitive to the amount of high-fidelity data. The purpose of this paper is to propose a multi fidelity surrogate modelling method whose accuracy is less dependent on the amount of high-fidelity data. Design/methodology/approach A multi-fidelity surrogate modelling method based on neural networks was proposed in this paper, which utilizes transfer learning ideas to explore the correlation between different fidelity datasets. A low-fidelity neural network was built by using a sufficient amount of low-fidelity data, which was then finetuned by a very small amount of HF data to obtain a multi-fidelity neural network based on this correlation. Findings Numerical examples were used in this paper, which proved the validity of the proposed method, and the influence of neural network hyper-parameters on the prediction accuracy of the multi-fidelity model was discussed. Originality/value Through the comparison with existing methods, case study shows that when the number of high-fidelity sample points is very small, the R -square of the proposed model exceeds the existing model by more than 0.3, which shows that the proposed method can be applied to reducing the cost of complex engineering design problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助Fred Guan采纳,获得10
刚刚
英俊的铭应助Yy采纳,获得10
1秒前
Hello应助阳光怀亦采纳,获得10
2秒前
FashionBoy应助星星采纳,获得10
2秒前
6秒前
幽默的山雁完成签到,获得积分10
6秒前
紫琉花雨完成签到 ,获得积分10
6秒前
玲玲玲完成签到,获得积分10
7秒前
8秒前
8秒前
学海无涯完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
12秒前
12秒前
12秒前
Jasper应助Meimei采纳,获得30
12秒前
科目三应助玲玲玲采纳,获得10
12秒前
CipherSage应助慕课魔芋采纳,获得10
13秒前
13秒前
13秒前
Coco椰发布了新的文献求助10
13秒前
虚心的岩发布了新的文献求助10
15秒前
一年半太久只争朝夕完成签到 ,获得积分10
15秒前
深情安青应助123采纳,获得10
16秒前
16秒前
16秒前
hyaoooo发布了新的文献求助10
17秒前
17秒前
17秒前
吉山芙发布了新的文献求助10
17秒前
煤炭不甜发布了新的文献求助10
17秒前
跳跃曼文发布了新的文献求助30
18秒前
EasonYan发布了新的文献求助10
18秒前
dafwfwaf完成签到,获得积分20
18秒前
NexusExplorer应助slby采纳,获得10
19秒前
0911wxt完成签到,获得积分10
19秒前
kumo完成签到 ,获得积分10
19秒前
姜姜发布了新的文献求助10
19秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3334795
求助须知:如何正确求助?哪些是违规求助? 2964054
关于积分的说明 8612143
捐赠科研通 2642902
什么是DOI,文献DOI怎么找? 1447045
科研通“疑难数据库(出版商)”最低求助积分说明 670503
邀请新用户注册赠送积分活动 658745