亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A new multi-fidelity surrogate modelling method for engineering design based on neural network and transfer learning

忠诚 计算机科学 人工神经网络 机器学习 替代模型 人工智能 学习迁移 样品(材料) 数据挖掘 算法 色谱法 电信 化学
作者
Mushi Li,Zhao Liu,Li Huang,Ping Zhu
出处
期刊:Engineering Computations [Emerald Publishing Limited]
卷期号:39 (6): 2209-2230 被引量:16
标识
DOI:10.1108/ec-06-2021-0353
摘要

Purpose Compared with the low-fidelity model, the high-fidelity model has both the advantage of high accuracy, and the disadvantage of low efficiency and high cost. A series of multi-fidelity surrogate modelling method were developed to give full play to the respective advantages of both low-fidelity and high-fidelity models. However, most multi-fidelity surrogate modelling methods are sensitive to the amount of high-fidelity data. The purpose of this paper is to propose a multi fidelity surrogate modelling method whose accuracy is less dependent on the amount of high-fidelity data. Design/methodology/approach A multi-fidelity surrogate modelling method based on neural networks was proposed in this paper, which utilizes transfer learning ideas to explore the correlation between different fidelity datasets. A low-fidelity neural network was built by using a sufficient amount of low-fidelity data, which was then finetuned by a very small amount of HF data to obtain a multi-fidelity neural network based on this correlation. Findings Numerical examples were used in this paper, which proved the validity of the proposed method, and the influence of neural network hyper-parameters on the prediction accuracy of the multi-fidelity model was discussed. Originality/value Through the comparison with existing methods, case study shows that when the number of high-fidelity sample points is very small, the R -square of the proposed model exceeds the existing model by more than 0.3, which shows that the proposed method can be applied to reducing the cost of complex engineering design problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
气945发布了新的文献求助10
23秒前
23秒前
taster完成签到,获得积分10
27秒前
1分钟前
甜甜纸飞机完成签到 ,获得积分10
1分钟前
1分钟前
甜甜的紫菜完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
matrixu完成签到,获得积分10
1分钟前
无花果应助hyc采纳,获得10
1分钟前
科研通AI6应助有趣的银采纳,获得10
1分钟前
星辰大海应助有趣的银采纳,获得10
1分钟前
1分钟前
2分钟前
caca完成签到,获得积分0
2分钟前
思源应助凉水采纳,获得10
2分钟前
花呗发布了新的文献求助10
2分钟前
2分钟前
pucca完成签到 ,获得积分10
2分钟前
凉水发布了新的文献求助10
2分钟前
凉水完成签到,获得积分10
2分钟前
花呗完成签到,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
单薄的蓝天完成签到,获得积分10
3分钟前
Lucas应助科研通管家采纳,获得10
3分钟前
Akim应助科研通管家采纳,获得10
3分钟前
无花果应助科研通管家采纳,获得10
3分钟前
Tiamo发布了新的文献求助10
3分钟前
SCI完成签到 ,获得积分10
3分钟前
乐乐应助科研圈外人采纳,获得10
4分钟前
开心的瘦子完成签到,获得积分10
4分钟前
CipherSage应助cc采纳,获得10
4分钟前
4分钟前
4分钟前
cc完成签到,获得积分10
4分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Fermented Coffee Market 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5232636
求助须知:如何正确求助?哪些是违规求助? 4401913
关于积分的说明 13699440
捐赠科研通 4268297
什么是DOI,文献DOI怎么找? 2342513
邀请新用户注册赠送积分活动 1339514
关于科研通互助平台的介绍 1296180