清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A new multi-fidelity surrogate modelling method for engineering design based on neural network and transfer learning

忠诚 计算机科学 人工神经网络 机器学习 替代模型 人工智能 学习迁移 样品(材料) 数据挖掘 算法 色谱法 电信 化学
作者
Mushi Li,Zhao Liu,Li Huang,Ping Zhu
出处
期刊:Engineering Computations [Emerald (MCB UP)]
卷期号:39 (6): 2209-2230 被引量:19
标识
DOI:10.1108/ec-06-2021-0353
摘要

Purpose Compared with the low-fidelity model, the high-fidelity model has both the advantage of high accuracy, and the disadvantage of low efficiency and high cost. A series of multi-fidelity surrogate modelling method were developed to give full play to the respective advantages of both low-fidelity and high-fidelity models. However, most multi-fidelity surrogate modelling methods are sensitive to the amount of high-fidelity data. The purpose of this paper is to propose a multi fidelity surrogate modelling method whose accuracy is less dependent on the amount of high-fidelity data. Design/methodology/approach A multi-fidelity surrogate modelling method based on neural networks was proposed in this paper, which utilizes transfer learning ideas to explore the correlation between different fidelity datasets. A low-fidelity neural network was built by using a sufficient amount of low-fidelity data, which was then finetuned by a very small amount of HF data to obtain a multi-fidelity neural network based on this correlation. Findings Numerical examples were used in this paper, which proved the validity of the proposed method, and the influence of neural network hyper-parameters on the prediction accuracy of the multi-fidelity model was discussed. Originality/value Through the comparison with existing methods, case study shows that when the number of high-fidelity sample points is very small, the R -square of the proposed model exceeds the existing model by more than 0.3, which shows that the proposed method can be applied to reducing the cost of complex engineering design problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
称心的晓霜完成签到,获得积分10
14秒前
17秒前
18秒前
量子星尘发布了新的文献求助10
21秒前
22秒前
34秒前
36秒前
41秒前
拼搏问薇完成签到 ,获得积分10
49秒前
50秒前
57秒前
1分钟前
supermaltose完成签到,获得积分10
1分钟前
1分钟前
yyds完成签到,获得积分0
1分钟前
1分钟前
1分钟前
科研狗的春天完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
輕瘋发布了新的文献求助10
1分钟前
輕瘋完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
葛力完成签到,获得积分10
2分钟前
3分钟前
3分钟前
ZTiamT发布了新的文献求助200
3分钟前
3分钟前
3分钟前
3分钟前
ZTiamT发布了新的文献求助10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732460
求助须知:如何正确求助?哪些是违规求助? 5339547
关于积分的说明 15322262
捐赠科研通 4878002
什么是DOI,文献DOI怎么找? 2620838
邀请新用户注册赠送积分活动 1570005
关于科研通互助平台的介绍 1526699