A new multi-fidelity surrogate modelling method for engineering design based on neural network and transfer learning

忠诚 计算机科学 人工神经网络 机器学习 替代模型 人工智能 学习迁移 样品(材料) 数据挖掘 算法 色谱法 电信 化学
作者
Mushi Li,Zhao Liu,Li Huang,Ping Zhu
出处
期刊:Engineering Computations [Emerald Publishing Limited]
卷期号:39 (6): 2209-2230 被引量:16
标识
DOI:10.1108/ec-06-2021-0353
摘要

Purpose Compared with the low-fidelity model, the high-fidelity model has both the advantage of high accuracy, and the disadvantage of low efficiency and high cost. A series of multi-fidelity surrogate modelling method were developed to give full play to the respective advantages of both low-fidelity and high-fidelity models. However, most multi-fidelity surrogate modelling methods are sensitive to the amount of high-fidelity data. The purpose of this paper is to propose a multi fidelity surrogate modelling method whose accuracy is less dependent on the amount of high-fidelity data. Design/methodology/approach A multi-fidelity surrogate modelling method based on neural networks was proposed in this paper, which utilizes transfer learning ideas to explore the correlation between different fidelity datasets. A low-fidelity neural network was built by using a sufficient amount of low-fidelity data, which was then finetuned by a very small amount of HF data to obtain a multi-fidelity neural network based on this correlation. Findings Numerical examples were used in this paper, which proved the validity of the proposed method, and the influence of neural network hyper-parameters on the prediction accuracy of the multi-fidelity model was discussed. Originality/value Through the comparison with existing methods, case study shows that when the number of high-fidelity sample points is very small, the R -square of the proposed model exceeds the existing model by more than 0.3, which shows that the proposed method can be applied to reducing the cost of complex engineering design problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jian发布了新的文献求助10
1秒前
hu完成签到,获得积分10
2秒前
皮皮卡发布了新的文献求助10
3秒前
聪慧烙完成签到,获得积分10
3秒前
5秒前
6秒前
zorro3574发布了新的文献求助10
6秒前
yar应助整齐灵阳采纳,获得10
8秒前
明明明完成签到,获得积分10
9秒前
linxy发布了新的文献求助10
10秒前
muyi完成签到,获得积分10
11秒前
Orange应助三物采纳,获得10
13秒前
薄荷微凉完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
16秒前
18秒前
Orange应助zorro3574采纳,获得10
18秒前
VLH发布了新的文献求助10
19秒前
yydragen应助lixinlong采纳,获得10
21秒前
25秒前
熊熊发布了新的文献求助10
25秒前
11完成签到,获得积分10
26秒前
26秒前
27秒前
苹果井发布了新的文献求助10
27秒前
27秒前
coolkid应助hhllhh采纳,获得10
28秒前
butaishao发布了新的文献求助10
28秒前
彭于晏应助文欣采纳,获得10
30秒前
微笑寻凝发布了新的文献求助10
30秒前
六月完成签到,获得积分10
31秒前
31秒前
31秒前
huhuhuhu完成签到,获得积分20
31秒前
GingerF应助知性的从雪采纳,获得50
31秒前
recovery完成签到,获得积分10
31秒前
Chanyl发布了新的文献求助10
33秒前
34秒前
chigga发布了新的文献求助10
35秒前
wonder完成签到 ,获得积分10
36秒前
Jian完成签到,获得积分10
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959759
求助须知:如何正确求助?哪些是违规求助? 3506016
关于积分的说明 11127457
捐赠科研通 3237969
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871741
科研通“疑难数据库(出版商)”最低求助积分说明 803019