亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A new multi-fidelity surrogate modelling method for engineering design based on neural network and transfer learning

忠诚 计算机科学 人工神经网络 机器学习 替代模型 人工智能 学习迁移 样品(材料) 数据挖掘 算法 色谱法 电信 化学
作者
Mushi Li,Zhao Liu,Li Huang,Ping Zhu
出处
期刊:Engineering Computations [Emerald (MCB UP)]
卷期号:39 (6): 2209-2230 被引量:19
标识
DOI:10.1108/ec-06-2021-0353
摘要

Purpose Compared with the low-fidelity model, the high-fidelity model has both the advantage of high accuracy, and the disadvantage of low efficiency and high cost. A series of multi-fidelity surrogate modelling method were developed to give full play to the respective advantages of both low-fidelity and high-fidelity models. However, most multi-fidelity surrogate modelling methods are sensitive to the amount of high-fidelity data. The purpose of this paper is to propose a multi fidelity surrogate modelling method whose accuracy is less dependent on the amount of high-fidelity data. Design/methodology/approach A multi-fidelity surrogate modelling method based on neural networks was proposed in this paper, which utilizes transfer learning ideas to explore the correlation between different fidelity datasets. A low-fidelity neural network was built by using a sufficient amount of low-fidelity data, which was then finetuned by a very small amount of HF data to obtain a multi-fidelity neural network based on this correlation. Findings Numerical examples were used in this paper, which proved the validity of the proposed method, and the influence of neural network hyper-parameters on the prediction accuracy of the multi-fidelity model was discussed. Originality/value Through the comparison with existing methods, case study shows that when the number of high-fidelity sample points is very small, the R -square of the proposed model exceeds the existing model by more than 0.3, which shows that the proposed method can be applied to reducing the cost of complex engineering design problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
19秒前
56秒前
烂漫的绿茶完成签到 ,获得积分10
59秒前
DONG发布了新的文献求助10
59秒前
寂寞的尔丝完成签到 ,获得积分10
1分钟前
小小绿发布了新的文献求助50
2分钟前
超级的千青完成签到 ,获得积分10
2分钟前
ding应助知闲采纳,获得10
2分钟前
3分钟前
满意机器猫完成签到 ,获得积分10
3分钟前
宁不正发布了新的文献求助10
3分钟前
英俊的铭应助科研通管家采纳,获得10
3分钟前
情怀应助科研通管家采纳,获得10
3分钟前
3分钟前
赘婿应助宁不正采纳,获得10
3分钟前
3分钟前
3分钟前
小小绿完成签到,获得积分20
4分钟前
量子星尘发布了新的文献求助10
4分钟前
Sylvia_J完成签到 ,获得积分10
4分钟前
4分钟前
cy0824完成签到 ,获得积分10
4分钟前
hhh完成签到 ,获得积分10
5分钟前
Shicheng完成签到,获得积分10
6分钟前
汉堡包应助科研通管家采纳,获得10
7分钟前
wangfaqing942完成签到 ,获得积分10
8分钟前
8分钟前
飞天的鱼发布了新的文献求助10
8分钟前
飞天的鱼完成签到,获得积分10
8分钟前
科研通AI6应助科研通管家采纳,获得10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
在水一方完成签到,获得积分0
9分钟前
科研通AI2S应助hjy采纳,获得10
9分钟前
fcycukvujblk完成签到,获得积分10
9分钟前
9分钟前
hjy发布了新的文献求助10
9分钟前
11分钟前
宁不正发布了新的文献求助10
11分钟前
AixLeft完成签到 ,获得积分10
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5635124
求助须知:如何正确求助?哪些是违规求助? 4734822
关于积分的说明 14989758
捐赠科研通 4792826
什么是DOI,文献DOI怎么找? 2559937
邀请新用户注册赠送积分活动 1520202
关于科研通互助平台的介绍 1480262