A fast multi-source information fusion strategy based on deep learning for species identification of boletes

鉴定(生物学) 蘑菇 深度学习 人工智能 计算机科学 资源(消歧) 订单(交换) 中国 信息融合 生物系统 机器学习 植物 生物 地理 业务 考古 计算机网络 财务
作者
Xiong Chen,Jieqing Li,Honggao Liu,Yuanzhong Wang
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:274: 121137-121137 被引量:12
标识
DOI:10.1016/j.saa.2022.121137
摘要

Wild mushroom market is an important economic source of Yunnan province in China, and its wild mushroom resources are also valuable wealth in the world. This work will put forward a method of species identification and optimize the method in order to maintain the market order and protect the economic benefits of wild mushrooms. Here we establish deep learning (DL) models based on the two-dimensional correlation spectroscopy (2DCOS) images of near-infrared spectroscopy from boletes, and optimize the identification effect of the model. The results show that synchronous 2DCOS is the best method to establish DL model, and when the learning rate was 0.01, the epochs were 40, using stipes and caps data, the identification effect would be further improved. This method retains the complete information of the samples and can provide a fast and noninvasive method for identifying boletes species for market regulators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张益萌应助超级悟空采纳,获得10
1秒前
田様应助青岩采纳,获得10
1秒前
huo应助科研通管家采纳,获得10
3秒前
险胜应助科研通管家采纳,获得10
3秒前
Miracle发布了新的文献求助10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
3秒前
wanci应助科研通管家采纳,获得10
3秒前
Ganlou应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
4秒前
4秒前
香蕉觅云应助科研通管家采纳,获得50
4秒前
淡蓝星空应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
huo应助科研通管家采纳,获得10
4秒前
Ganlou应助科研通管家采纳,获得10
4秒前
险胜应助科研通管家采纳,获得10
4秒前
嘉心糖应助科研通管家采纳,获得20
4秒前
英姑应助科研通管家采纳,获得10
4秒前
5秒前
6秒前
nini发布了新的文献求助10
7秒前
Hello应助学术学习采纳,获得10
8秒前
8秒前
8秒前
buno应助三三采纳,获得10
8秒前
123应助wyx采纳,获得10
8秒前
典雅的俊驰应助王算法采纳,获得10
9秒前
我是老大应助hugebear采纳,获得20
9秒前
充电宝应助hai采纳,获得10
10秒前
fillippo99应助酷酷的山雁采纳,获得10
11秒前
DrDaiJune发布了新的文献求助10
11秒前
沙丁鹌鹑完成签到 ,获得积分10
11秒前
mange关注了科研通微信公众号
12秒前
ido完成签到,获得积分10
12秒前
哈喽发布了新的文献求助20
12秒前
13秒前
球球发布了新的文献求助10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 900
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313305
求助须知:如何正确求助?哪些是违规求助? 2945741
关于积分的说明 8526806
捐赠科研通 2621466
什么是DOI,文献DOI怎么找? 1433588
科研通“疑难数据库(出版商)”最低求助积分说明 665057
邀请新用户注册赠送积分活动 650585