An error correction prediction model based on three-way decision and ensemble learning

计算机科学 均方预测误差 集合预报 机器学习 人工智能 人工神经网络 集成学习 预测建模 理论(学习稳定性) 范围(计算机科学) 性能预测 数据挖掘
作者
Xianfeng Huang,Jianming Zhan,Weiping Ding,Witold Pedrycz
出处
期刊:International Journal of Approximate Reasoning [Elsevier]
标识
DOI:10.1016/j.ijar.2022.04.002
摘要

As a hot topic in machine learning, prediction has attracted a lot of attention nowadays. Scientific prediction can provide a guide for reducing decision-making losses and making reasonable decisions. However, most of existing prediction models still suffer from limited performance, which cannot reasonably handle complex prediction problems. In addition, there are certain limitations in the scope of different prediction models. In light of the above limitations, the paper proposes a novel error correction prediction model based on the idea of three-way decision (TWD), which is titled an ECP-TWD model. First, the back propagation algorithm optimized neural network (BPNN) model is used to achieve the pre-prediction and obtain initial prediction error series. Second, we further combine the strengths of TWD with ensemble learning, tri-divide all alternatives according to the magnitude of the prediction error of the BPNN model, and apply different strategies to re-predict the prediction error sequence in each region, so as to achieve the correction of predicted values of the BPNN model. Finally, the validity, stability and superiority of the presented model are verified based on the case analysis and experimental analysis. The results show that the ECP-TWD model has the better prediction performance compared to other state-of-the-art prediction models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友发布了新的文献求助10
1秒前
1秒前
诚心仰发布了新的文献求助10
1秒前
烟花应助整齐醉冬采纳,获得10
1秒前
1秒前
一杯就会醉关注了科研通微信公众号
1秒前
1秒前
了一完成签到,获得积分10
3秒前
123456qi发布了新的文献求助10
4秒前
芮洓趋完成签到,获得积分10
4秒前
个性的荆发布了新的文献求助10
5秒前
5秒前
5秒前
ANAN发布了新的文献求助30
6秒前
7秒前
所所应助hamburgeeHH采纳,获得10
7秒前
老水发布了新的文献求助10
8秒前
8秒前
一个果儿应助Harper采纳,获得30
9秒前
无极微光应助玩命的靖仇采纳,获得20
9秒前
兰彻完成签到,获得积分10
10秒前
顺顺顺应助朱宸采纳,获得10
10秒前
个性的夜天完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
深情衬衫发布了新的文献求助10
11秒前
嘴嘴发布了新的文献求助10
11秒前
12秒前
Akim应助jkhjkhj采纳,获得10
13秒前
13秒前
Unshouable完成签到,获得积分10
13秒前
13秒前
在水一方应助宋依依采纳,获得10
13秒前
Rui_Rui完成签到,获得积分10
13秒前
夕沫发布了新的文献求助10
14秒前
谦三发布了新的文献求助10
14秒前
隐形曼青应助熊旺林采纳,获得10
14秒前
16秒前
深情安青应助丰富的以筠采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5636998
求助须知:如何正确求助?哪些是违规求助? 4742430
关于积分的说明 14997256
捐赠科研通 4795195
什么是DOI,文献DOI怎么找? 2561870
邀请新用户注册赠送积分活动 1521362
关于科研通互助平台的介绍 1481478