Semi-supervised EEG emotion recognition model based on enhanced graph fusion and GCN

模式识别(心理学) 计算机科学 人工智能 图形 融合 特征(语言学) 脑电图 主成分分析 理论计算机科学 心理学 语言学 精神科 哲学
作者
Guangqiang Li,Ning Chen,Jing Jin
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:19 (2): 026039-026039 被引量:23
标识
DOI:10.1088/1741-2552/ac63ec
摘要

Abstract Objective . To take full advantage of both labeled data and unlabeled ones, the Graph Convolutional Network (GCN) was introduced in electroencephalography (EEG) based emotion recognition to achieve feature propagation. However, a single feature cannot represent the emotional state entirely and precisely due to the instability of the EEG signal and the complexity of the emotional state. In addition, the noise existing in the graph may affect the performance greatly. To solve these problems, it was necessary to introduce feature/similarity fusion and noise reduction strategies. Approach . A semi-supervised EEG emotion recognition model combining graph fusion, network enhancement, and feature fusion was proposed. Firstly, different features were extracted from EEG and then compacted by Principal Component Analysis (PCA), respectively. Secondly, a Sample-by-sample Similarity Matrix (SSM) was constructed based on each feature, and similarity network fusion (SNF) was adopted to fuse the graphs corresponding to different SSMs to take advantage of their complementarity. Then, Network Enhancement (NE) was performed on the fused graph to reduce the noise in it. Finally, GCN was performed on the concatenated features and the enhanced fused graph to achieve feature propagation. Main results . Experimental results demonstrated that: (a) When 5.30 % of SEED and 7.20 % of SEED-IV samples were chosen as the labeled samples, respectively, the minimum classification accuracy improvement achieved by the proposed scheme over state-of-the-art schemes were 1.52 % on SEED and 13.14 % on SEED-IV, respectively. (b) When 8.00 % of SEED and 9.60 % of SEED-IV samples were chosen as the labeled samples, respectively, the minimum training time reduction achieved by the proposed scheme over state-of-the-art schemes were 46.75 s and 22.55 s, respectively. (c) Graph fusion, network enhancement, and feature fusion all contributed to the performance enhancement. (d) The key hyperparameters that affect the performance were relatively few and easy to set to obtain outstanding performance. Significance . This paper demonstrated that the combination of graph fusion, network enhancement, and feature fusion help to enhance GCN-based EEG emotion recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
知识四面八方来完成签到 ,获得积分10
刚刚
小鬼完成签到,获得积分10
刚刚
几木发布了新的文献求助20
刚刚
王慧完成签到,获得积分10
1秒前
Hello应助郁香薇采纳,获得10
1秒前
yun完成签到 ,获得积分10
2秒前
2秒前
2秒前
舒畅发布了新的文献求助10
2秒前
无力发布了新的文献求助10
2秒前
华仔应助香蕉八宝粥采纳,获得10
2秒前
lym完成签到,获得积分10
2秒前
yuhaha发布了新的文献求助10
3秒前
kiterunner完成签到,获得积分10
3秒前
3秒前
austing完成签到,获得积分10
4秒前
牛牛完成签到,获得积分10
5秒前
zlx完成签到,获得积分10
5秒前
Ricardo完成签到 ,获得积分10
5秒前
晓晓雪发布了新的文献求助10
5秒前
manchang完成签到 ,获得积分10
6秒前
大鱼完成签到 ,获得积分10
6秒前
cherrychou完成签到,获得积分20
6秒前
英姑应助zhanjl13采纳,获得10
6秒前
在水一方应助ZZurose采纳,获得10
6秒前
xiha西希完成签到 ,获得积分10
6秒前
gaoyayaaa完成签到,获得积分20
7秒前
luo完成签到,获得积分10
8秒前
上官若男应助粗心的智慧采纳,获得10
8秒前
舒畅完成签到,获得积分10
8秒前
无花果应助MlzqdE采纳,获得10
8秒前
郁香薇完成签到,获得积分10
9秒前
自觉的海蓝完成签到,获得积分10
9秒前
9秒前
张张完成签到,获得积分20
9秒前
tjunqi完成签到,获得积分10
9秒前
cyndi应助翁雁丝采纳,获得20
10秒前
11秒前
木木完成签到,获得积分10
12秒前
劲秉应助码头整点薯条采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3510997
求助须知:如何正确求助?哪些是违规求助? 3093756
关于积分的说明 9218930
捐赠科研通 2788213
什么是DOI,文献DOI怎么找? 1530059
邀请新用户注册赠送积分活动 710736
科研通“疑难数据库(出版商)”最低求助积分说明 706329