Lead-lag grey forecasting model in the new community group buying retailing

滞后 时滞 群(周期表) 铅(地质) 滞后时间 业务 计量经济学 计算机科学 经济 地质学 化学 计算机网络 生物 地貌学 有机化学 生物系统
作者
Huimin Zhu,Xinping Xiao,Yong Kang,Dekai Kong
出处
期刊:Chaos Solitons & Fractals [Elsevier]
卷期号:158: 112024-112024 被引量:8
标识
DOI:10.1016/j.chaos.2022.112024
摘要

Community group buying is the preferred shopping method for many consumers during the COVID-19 epidemic in China. This new Internet pre-sale mode has a lead- lag effect and non-linear characteristics. Therefore, studying the prediction of community group buying has practical significance. In this paper, the lead-lag term of vector autoregressive model is coupled with the nonlinear term in the GM (1, 1, tα) model. Then, lead-lag factor τ and nonlinear factor tμ are added in the grey modelling process, and a novel hybrid grey forecasting model of lead-lag and nonlinearity (GAPM) is established by means of optimising the background value. Firstly, the least squares method and derivation method are used to obtain the model parameter values and time response expressions, and the stability of GAPM is studied on the basis of condition number theory of matrices. Secondly, the grey evolutionary algorithm is introduced to obtain the optimal solution of the background value and nonlinear factor, and the weighted geometric average weakening buffer operator is used to preprocess the original data. Finally, the new model is used to fit and predict the daily sales of Orange Optimization Company in Wuhan, China for two consecutive months of community group buying. Results show that the model has good stability and high prediction accuracy. Compared with the other five common grey models that do not consider the lead-lag influence of the system, GAPM has better predictive ability. Therefore, the introduction of the new model constructed by using the lead-lag factor is reasonable and effective in the case of community group buying with lead-lag effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助beituo采纳,获得10
1秒前
1秒前
1秒前
zzz完成签到,获得积分10
1秒前
zhao发布了新的文献求助10
2秒前
2秒前
ding应助刘璇1采纳,获得10
3秒前
严昌发布了新的文献求助10
5秒前
安陌煜发布了新的文献求助30
6秒前
6秒前
CipherSage应助月亮是甜的采纳,获得10
6秒前
刘一爱吃西瓜完成签到,获得积分10
7秒前
chinaclfeng发布了新的文献求助30
7秒前
7秒前
婷杰完成签到,获得积分10
8秒前
8秒前
浮浮沉沉完成签到,获得积分10
9秒前
刘璇1发布了新的文献求助10
10秒前
情怀应助发嗲的大米采纳,获得10
10秒前
黄小北完成签到,获得积分10
10秒前
清风发布了新的文献求助10
10秒前
黑夜做着白日梦应助1111采纳,获得10
11秒前
三金发布了新的文献求助10
12秒前
13秒前
完美楠人发布了新的文献求助20
14秒前
15秒前
19秒前
19秒前
第七个星球完成签到,获得积分10
23秒前
林lin完成签到,获得积分10
24秒前
sal发布了新的文献求助10
24秒前
25秒前
31秒前
bagai完成签到,获得积分10
31秒前
31秒前
31秒前
Akim应助强健的月饼采纳,获得10
32秒前
32秒前
小浣熊完成签到 ,获得积分10
32秒前
安陌煜发布了新的文献求助30
36秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459147
求助须知:如何正确求助?哪些是违规求助? 3053698
关于积分的说明 9037829
捐赠科研通 2742963
什么是DOI,文献DOI怎么找? 1504592
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694644