High-resolution fluid–particle interactions: a machine learning approach

计算机科学 多边形网格 计算 计算流体力学 比例(比率) 计算科学 算法 数学优化 机械 物理 数学 量子力学 计算机图形学(图像)
作者
Tsimur Davydzenka,Pejman Tahmasebi
出处
期刊:Journal of Fluid Mechanics [Cambridge University Press]
卷期号:938 被引量:16
标识
DOI:10.1017/jfm.2022.174
摘要

Modelling of fluid–particle interactions is a major area of research in many fields of science and engineering. There are several techniques that allow modelling of such interactions, among which the coupling of computational fluid dynamics (CFD) and the discrete element method (DEM) is one of the most convenient solutions due to the balance between accuracy and computational costs. However, the accuracy of this method is largely dependent upon mesh size, where obtaining realistic results always comes with the necessity of using a small mesh and thereby increasing computational intensity. To compensate for the inaccuracies of using a large mesh in such modelling, and still take advantage of rapid computations, we extended the classical modelling by combining it with a machine learning model. We have conducted seven simulations where the first one is a numerical model with a fine mesh (i.e. ground truth) with a very high computational time and accuracy, the next three models are constructed on coarse meshes with considerably less accuracy and computational burden and the last three models are assisted by machine learning, where we can obtain large improvements in terms of observing fine-scale features yet based on a coarse mesh. The results of this study show that there is a great opportunity in machine learning towards improving classical fluid–particle modelling approaches by producing highly accurate models for large-scale systems in a reasonable time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助Pendragon采纳,获得10
1秒前
www完成签到,获得积分10
3秒前
111发布了新的文献求助10
3秒前
3秒前
yz完成签到 ,获得积分10
4秒前
科研通AI5应助鱼儿采纳,获得30
4秒前
Lucas应助Msure采纳,获得10
4秒前
英俊的铭应助幸运之裤1111采纳,获得10
5秒前
实验好难应助Gigi采纳,获得10
7秒前
WFLLL发布了新的文献求助10
8秒前
体贴凌柏应助笨笨煎饼采纳,获得10
11秒前
钱多多完成签到,获得积分10
11秒前
ZZzz完成签到 ,获得积分10
13秒前
细腻飞鸟完成签到,获得积分10
15秒前
寒子川完成签到,获得积分20
15秒前
15秒前
田様应助junjun采纳,获得10
15秒前
15秒前
16秒前
16秒前
NexusExplorer应助独特的忆彤采纳,获得10
16秒前
JamesPei应助梦在彼岸采纳,获得10
16秒前
科研坤坤完成签到,获得积分20
18秒前
南风完成签到,获得积分10
18秒前
Lucas应助永望冰希采纳,获得10
19秒前
回忆发布了新的文献求助10
19秒前
19秒前
滕擎完成签到,获得积分10
20秒前
20秒前
20秒前
123发布了新的文献求助10
20秒前
21秒前
21秒前
21秒前
鳗鱼颖发布了新的文献求助10
22秒前
小小迷糊发布了新的文献求助10
22秒前
ewxf2001发布了新的文献求助10
22秒前
迟大猫应助钱多多采纳,获得10
22秒前
聪慧乐儿发布了新的文献求助10
23秒前
ovc发布了新的文献求助10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Oligomycin, a new antifungal antibiotic 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3583624
求助须知:如何正确求助?哪些是违规求助? 3152835
关于积分的说明 9494347
捐赠科研通 2855426
什么是DOI,文献DOI怎么找? 1569545
邀请新用户注册赠送积分活动 735372
科研通“疑难数据库(出版商)”最低求助积分说明 721212