Comparison of conceptually different multi-objective Bayesian optimization methods for material design problems

水准点(测量) 计算机科学 协议(科学) 贝叶斯优化 贝叶斯概率 实验设计 数学优化 机器学习 人工智能 数学 医学 统计 替代医学 大地测量学 病理 地理
作者
Kyohei Hanaoka
出处
期刊:Materials today communications [Elsevier]
卷期号:31: 103440-103440 被引量:20
标识
DOI:10.1016/j.mtcomm.2022.103440
摘要

For real-world applications, material properties must usually meet multiple requirements, and researchers often spend considerable time designing such materials by trial and error. Multi-objective Bayesian optimization (MOBO) constitutes a promising data-driven solution to accelerate such design problems. As things stand, conceptually different MOBO methods exist for material design problems, such as scalarization- and hypervolume-based methods. However, no standard approach exists to compare how these methods perform and the appropriate choice of MOBO method in each case remains unclear. Herein, a benchmark protocol to compare how conceptually different MOBO methods perform was introduced, based on which the performances of MOBO methods were comprehensively compared using multiple design problems and performance metrics. The benchmark results showed that there was no method that performed best for all combinations of design problems and performance metrics. Moreover, when multiple MOBO methods were compared, the opportunity cost of using each method emerged and it was shown that an inappropriately chosen method can hinder MOBO efficiency. The benchmark results shown here highlight the importance of choosing the right MOBO method and provide guidelines for how this can be done.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无脚鸟完成签到,获得积分10
刚刚
自觉博超发布了新的文献求助10
刚刚
拍肩大帝陈灵均完成签到 ,获得积分10
刚刚
Sissimummy完成签到,获得积分10
1秒前
2秒前
2秒前
从容问雁完成签到,获得积分10
2秒前
阿福发布了新的文献求助10
2秒前
开朗道天完成签到 ,获得积分10
2秒前
2秒前
猫绒球发布了新的文献求助10
2秒前
长孙曼香完成签到,获得积分10
3秒前
万能图书馆应助嘟嘟采纳,获得10
3秒前
无脚鸟发布了新的文献求助10
3秒前
哈哈发布了新的文献求助10
4秒前
4秒前
4秒前
吕佳给吕佳的求助进行了留言
4秒前
5秒前
5秒前
6秒前
6秒前
7秒前
如意小虾米完成签到 ,获得积分10
7秒前
刘123完成签到,获得积分10
7秒前
如意小虾米完成签到 ,获得积分10
7秒前
7秒前
张艺凡完成签到,获得积分10
8秒前
无花果应助叶舟采纳,获得10
8秒前
8秒前
9秒前
max完成签到,获得积分10
9秒前
NOIR4LU发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
10秒前
10秒前
漂亮的不言完成签到 ,获得积分10
11秒前
WoeL.Aug.11发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286781
求助须知:如何正确求助?哪些是违规求助? 4439406
关于积分的说明 13821497
捐赠科研通 4321398
什么是DOI,文献DOI怎么找? 2371854
邀请新用户注册赠送积分活动 1367418
关于科研通互助平台的介绍 1330879