Comparison of conceptually different multi-objective Bayesian optimization methods for material design problems

水准点(测量) 计算机科学 协议(科学) 贝叶斯优化 贝叶斯概率 实验设计 数学优化 机器学习 人工智能 数学 医学 统计 替代医学 大地测量学 病理 地理
作者
Kyohei Hanaoka
出处
期刊:Materials today communications [Elsevier]
卷期号:31: 103440-103440 被引量:20
标识
DOI:10.1016/j.mtcomm.2022.103440
摘要

For real-world applications, material properties must usually meet multiple requirements, and researchers often spend considerable time designing such materials by trial and error. Multi-objective Bayesian optimization (MOBO) constitutes a promising data-driven solution to accelerate such design problems. As things stand, conceptually different MOBO methods exist for material design problems, such as scalarization- and hypervolume-based methods. However, no standard approach exists to compare how these methods perform and the appropriate choice of MOBO method in each case remains unclear. Herein, a benchmark protocol to compare how conceptually different MOBO methods perform was introduced, based on which the performances of MOBO methods were comprehensively compared using multiple design problems and performance metrics. The benchmark results showed that there was no method that performed best for all combinations of design problems and performance metrics. Moreover, when multiple MOBO methods were compared, the opportunity cost of using each method emerged and it was shown that an inappropriately chosen method can hinder MOBO efficiency. The benchmark results shown here highlight the importance of choosing the right MOBO method and provide guidelines for how this can be done.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyds发布了新的文献求助30
1秒前
1秒前
Fitz完成签到,获得积分10
1秒前
游一发布了新的文献求助10
2秒前
慕青应助seanx采纳,获得10
2秒前
2秒前
雨中小王应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得30
2秒前
3秒前
雨中小王应助科研通管家采纳,获得10
3秒前
不配.应助科研通管家采纳,获得200
3秒前
李健应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
BowieHuang应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
Pendragon发布了新的文献求助10
4秒前
4秒前
4秒前
魔法少女猪壮壮完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
星期五完成签到,获得积分10
6秒前
阁主完成签到,获得积分10
7秒前
传奇3应助dd采纳,获得10
7秒前
乐乐应助汤婆婆采纳,获得10
8秒前
苹果亦巧完成签到,获得积分10
8秒前
....完成签到 ,获得积分10
8秒前
严婉蓉完成签到 ,获得积分10
8秒前
9秒前
Genius发布了新的文献求助10
9秒前
科目三应助66采纳,获得10
9秒前
FashionBoy应助berg采纳,获得10
10秒前
小鱼美美发布了新的文献求助10
12秒前
星辰大海应助苹果亦巧采纳,获得30
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594267
求助须知:如何正确求助?哪些是违规求助? 4679962
关于积分的说明 14812493
捐赠科研通 4646674
什么是DOI,文献DOI怎么找? 2534851
邀请新用户注册赠送积分活动 1502831
关于科研通互助平台的介绍 1469497