Comparison of conceptually different multi-objective Bayesian optimization methods for material design problems

水准点(测量) 计算机科学 协议(科学) 贝叶斯优化 贝叶斯概率 实验设计 数学优化 机器学习 人工智能 数学 医学 统计 替代医学 大地测量学 病理 地理
作者
Kyohei Hanaoka
出处
期刊:Materials today communications [Elsevier BV]
卷期号:31: 103440-103440 被引量:20
标识
DOI:10.1016/j.mtcomm.2022.103440
摘要

For real-world applications, material properties must usually meet multiple requirements, and researchers often spend considerable time designing such materials by trial and error. Multi-objective Bayesian optimization (MOBO) constitutes a promising data-driven solution to accelerate such design problems. As things stand, conceptually different MOBO methods exist for material design problems, such as scalarization- and hypervolume-based methods. However, no standard approach exists to compare how these methods perform and the appropriate choice of MOBO method in each case remains unclear. Herein, a benchmark protocol to compare how conceptually different MOBO methods perform was introduced, based on which the performances of MOBO methods were comprehensively compared using multiple design problems and performance metrics. The benchmark results showed that there was no method that performed best for all combinations of design problems and performance metrics. Moreover, when multiple MOBO methods were compared, the opportunity cost of using each method emerged and it was shown that an inappropriately chosen method can hinder MOBO efficiency. The benchmark results shown here highlight the importance of choosing the right MOBO method and provide guidelines for how this can be done.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
qiu完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
Owen应助多摩川的烟花少年采纳,获得10
2秒前
12关闭了12文献求助
3秒前
qiucheng1227发布了新的文献求助10
3秒前
科研通AI6应助yayisheng采纳,获得10
3秒前
5秒前
5秒前
李牧发布了新的文献求助10
6秒前
6秒前
64658应助沧海一声笑采纳,获得10
7秒前
7秒前
浮游应助嘟噜采纳,获得10
7秒前
兴奋的若菱完成签到 ,获得积分10
7秒前
8秒前
dxm发布了新的文献求助10
8秒前
8秒前
量子星尘发布了新的文献求助30
9秒前
10秒前
10秒前
11秒前
林鑫璐发布了新的文献求助10
12秒前
12秒前
英吉利25发布了新的文献求助20
13秒前
叶郅晟发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
小枫发布了新的文献求助10
15秒前
Yang完成签到,获得积分10
15秒前
15秒前
Ding-Ding完成签到,获得积分10
15秒前
醉子发布了新的文献求助10
15秒前
周肆发布了新的文献求助20
16秒前
满意花生发布了新的文献求助10
16秒前
搜集达人应助迷路以筠采纳,获得10
16秒前
SciGPT应助外汇交易员采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950360
求助须知:如何正确求助?哪些是违规求助? 4213390
关于积分的说明 13103546
捐赠科研通 3995055
什么是DOI,文献DOI怎么找? 2186753
邀请新用户注册赠送积分活动 1202024
关于科研通互助平台的介绍 1115355