Anionic formulation of electrolyte additive towards stable electrocatalytic oxygen evolution in seawater splitting

电解质 无机化学 溶解 化学 析氧 氯化物 电解 海水 催化作用 过渡金属 腐蚀 水溶液中的金属离子 阳极 金属 电化学 电极 物理化学 海洋学 地质学 生物化学 有机化学
作者
Meng Yu,Jinhan Li,Fangming Liu,Jiuding Liu,Wence Xu,Honglu Hu,Xijie Chen,Weichao Wang,Fangyi Cheng
出处
期刊:Journal of Energy Chemistry [Elsevier]
卷期号:72: 361-369 被引量:125
标识
DOI:10.1016/j.jechem.2022.04.004
摘要

Highly stable oxygen evolution in alkaline seawater is demonstrated by anionic addition strategy. Phosphate ions act as a corrosion inhibitor to prevent the chloride absorption, buffer local pH and inhibit dissolution of transition metal ions. • A general screening rule is proposed to correlate anion property and Cl – repellency. • In situ spectroscopy and calculations reveal the pH-buffering effect of PO 4 3- ions. • Seawater splitting is greatly enhanced at a current density of 0.5 A cm −2 for 500 h. Hydrogen generation through seawater electrolysis provides a promising, attractive pathway towards the utilization of sustainable energy. However, the catalytic activity and stability of oxygen evolution anode are severely limited by the chloride-induced corrosion and competitive oxidation reactions. In this work, we demonstrate an anion-assisted performance improvement strategy by quick and universal screening of electrolyte additive via correlating Cl − repellency with the anionic properties. Particularly, the addition of phosphate ions is found to enable highly stable alkaline seawater splitting at industry-level current density (0.5 A cm −2 ) over 500 h using transition metal hydroxides as anodic electrocatalysts. In situ experiments and theoretical simulations further reveal that the dynamic anti-corrosion behaviors of surface-adsorbed phosphate ions are attributed to three factors including repelling Cl − ions without significantly blocking OH − diffusion, preventing transition metal dissolution and acting as a local pH buffer to compensate the fast OH − consumption under high current electrolysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
whatislove发布了新的文献求助10
1秒前
aa完成签到 ,获得积分10
1秒前
MrH完成签到,获得积分10
2秒前
大个应助喝杯水再走采纳,获得10
3秒前
吴学成发布了新的文献求助10
4秒前
4秒前
董鑫完成签到,获得积分10
4秒前
蛙蛙发布了新的文献求助10
5秒前
6秒前
上官若男应助Y_Jfeng采纳,获得10
7秒前
7秒前
麦子完成签到 ,获得积分10
8秒前
corazon发布了新的文献求助30
8秒前
CR完成签到,获得积分10
9秒前
邱名仕完成签到 ,获得积分10
9秒前
10秒前
花开富贵发布了新的文献求助10
11秒前
Lee关闭了Lee文献求助
12秒前
无极微光应助www采纳,获得20
12秒前
alexlpb完成签到,获得积分0
12秒前
江小白发布了新的文献求助10
13秒前
14秒前
英子发布了新的文献求助10
14秒前
鲁迪完成签到,获得积分10
14秒前
大模型应助cj采纳,获得10
16秒前
科研通AI2S应助xcc采纳,获得10
16秒前
17秒前
蓬蓬完成签到,获得积分10
18秒前
曲沉鱼发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
20秒前
corazon发布了新的文献求助30
20秒前
无极微光应助yana采纳,获得20
21秒前
Owen应助江风采纳,获得10
21秒前
23秒前
yy完成签到,获得积分10
25秒前
彭于晏应助Serena采纳,获得30
26秒前
学习发布了新的文献求助30
28秒前
yy发布了新的文献求助10
28秒前
鲁迪发布了新的文献求助30
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680081
求助须知:如何正确求助?哪些是违规求助? 4995956
关于积分的说明 15171678
捐赠科研通 4839887
什么是DOI,文献DOI怎么找? 2593687
邀请新用户注册赠送积分活动 1546696
关于科研通互助平台的介绍 1504768