亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Real‐Time Earthquake Detection and Magnitude Estimation Using Vision Transformer

震级(天文学) 计算机科学 标准差 变压器 地震记录 算法 地震学 统计 数学 地质学 工程类 物理 天文 电压 电气工程
作者
Omar M. Saad,Yunfeng Chen,Alexandros Savvaidis,Sergey Fomel,Yangkang Chen
出处
期刊:Journal Of Geophysical Research: Solid Earth [Wiley]
卷期号:127 (5) 被引量:13
标识
DOI:10.1029/2021jb023657
摘要

Abstract We design a fully automated system for real‐time magnitude estimation based on a vision transformer (ViT) network. ViT is an attention mechanisms, which guides the proposed network to extract the significant features from the input seismic data, leading to robust magnitude estimation performance. We propose to design two separate ViT networks, that is, one for picking the P‐wave arrival time and the other for predicting the earthquake magnitude using a single station. For real‐time application, we pick the P‐wave arrival times and consider them as the reference, based on which the non‐normalized 30‐s (i.e., 1 s before and 29 s after the reference time) three‐component seismograms are used to predict the magnitudes of the corresponding earthquakes. The ViT picking network is first trained and tested using the STanford EArthquake Data set (STEAD) and shows robust picking performance, achieving an average picking error of less than 0.2 s compared to the manual picks. Then, the ViT magnitude estimation network is evaluated using several data sets, including those from California, STEAD repository, and Texas. The ViT demonstrates robust magnitude estimation performance in all these test cases as compared with the benchmark methods. For magnitude estimation, the mean absolute error (MAE) and the standard deviation error ( σ ) for the testing set of the STEAD data set are 0.112 and 0.164 (as compared with 0.141 and 0.219 for the state‐of‐the‐art MagNet method), respectively. The MAE and σ for the California testing set are 0.079 and 0.120 (as compared with 0.089 and 0.138 for the Magnet method), respectively. As a case study, the new ViT networks are applied to the 24‐hr continuous seismic data of the TexNet‐PB05 station recorded on September 20th. The network successfully picks all the events in the TexNet catalog with a small (<=0.42) magnitude error. The ViT network shows promising magnitude prediction results when tested with 4‐s long seismograms. This highlights its potential in the earthquake early warning (EEW) system for fast and reliable decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Woo_SH完成签到 ,获得积分10
9秒前
田様应助去去去去采纳,获得10
10秒前
子月之路完成签到,获得积分10
18秒前
22秒前
奇凌发布了新的文献求助10
28秒前
Joe发布了新的文献求助30
30秒前
奇凌完成签到,获得积分10
32秒前
47秒前
52秒前
athena发布了新的文献求助10
55秒前
李家静完成签到 ,获得积分10
1分钟前
1分钟前
清脆冥幽完成签到,获得积分20
1分钟前
FashionBoy应助lbjcp3采纳,获得30
2分钟前
2分钟前
2分钟前
小巫发布了新的文献求助10
2分钟前
2分钟前
2分钟前
zhangxr发布了新的文献求助10
2分钟前
2分钟前
桐桐应助科研通管家采纳,获得30
2分钟前
Simon应助科研通管家采纳,获得10
2分钟前
爆米花应助科研通管家采纳,获得10
2分钟前
lbjcp3发布了新的文献求助30
2分钟前
打打应助zhangxr采纳,获得10
2分钟前
2分钟前
阿杜阿杜发布了新的文献求助10
2分钟前
3分钟前
阿杜阿杜完成签到,获得积分20
3分钟前
asd1576562308完成签到 ,获得积分10
4分钟前
张振希完成签到,获得积分10
4分钟前
烟花应助科研通管家采纳,获得10
4分钟前
情怀应助白萝卜采纳,获得10
4分钟前
4分钟前
5分钟前
温暖的盼山完成签到 ,获得积分10
5分钟前
张振希发布了新的文献求助10
5分钟前
5分钟前
王桑完成签到 ,获得积分10
5分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139573
求助须知:如何正确求助?哪些是违规求助? 2790430
关于积分的说明 7795287
捐赠科研通 2446905
什么是DOI,文献DOI怎么找? 1301487
科研通“疑难数据库(出版商)”最低求助积分说明 626238
版权声明 601146