已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automatic detection and localization of thighbone fractures in X-ray based on improved deep learning method

人工智能 计算机视觉 深度学习 计算机科学 模式识别(心理学)
作者
Bin Guan,Jinkun Yao,Shaoquan Wang,Guoshan Zhang,Yueming Zhang,Xinbo Wang,Mengxuan Wang
出处
期刊:Computer Vision and Image Understanding [Elsevier]
卷期号:216: 103345-103345 被引量:13
标识
DOI:10.1016/j.cviu.2021.103345
摘要

Deep learning is continuously promoting the development of fracture detection in medical images. In this study, we propose a novel two-stage region-based convolutional neural network for thighbone fractures detection. In this framework, the new network structure is designed to balance the information of each feature map in the feature pyramid of ResNeXt. In experiments, the pre-trained model is implemented on the dataset reported in the previous study, which includes 3842 thighbone X-ray radiographs. To compare the proposed framework with the latest detection techniques, transfer learning is employed to test all the state-of-the-art generic object detection algorithms on the same thighbone fracture dataset. Moreover, a few ablation experiments are given to demonstrate the effects of each component employed in the proposed framework and different hyperparameter settings on fracture detection. The experimental results show that the Average Precision of the proposed detection framework reaches 88.9% in thighbone fracture detection. This result proves the effectiveness of our framework and its superiority over other state-of-the-art methods. • A new deep learning framework is designed to detect thighbone fractures in X-rays. • The network structure includes a reconstructed feature pyramid and a attention block. • Our framework achieves an AP of 88.9% and outperforms all existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷路老鼠发布了新的文献求助10
1秒前
shine完成签到,获得积分10
2秒前
3秒前
mmmmmmgm完成签到 ,获得积分10
4秒前
4秒前
4秒前
宗铁强完成签到,获得积分20
6秒前
7秒前
Lucas应助简单雨柏采纳,获得10
10秒前
11秒前
12秒前
12秒前
14秒前
Nian发布了新的文献求助10
15秒前
YY发布了新的文献求助10
16秒前
17秒前
王磊完成签到 ,获得积分10
20秒前
20秒前
yi只熊完成签到,获得积分20
21秒前
简单雨柏完成签到,获得积分10
22秒前
yi只熊发布了新的文献求助20
25秒前
Kylin完成签到,获得积分10
27秒前
29秒前
30秒前
30秒前
赘婿应助yi只熊采纳,获得20
33秒前
Alex应助科研通管家采纳,获得20
34秒前
gkads应助科研通管家采纳,获得10
34秒前
浮游应助科研通管家采纳,获得10
34秒前
大模型应助科研通管家采纳,获得10
34秒前
火火发布了新的文献求助10
34秒前
Trinka完成签到,获得积分10
36秒前
JamesPei应助zhuxiaoyue采纳,获得10
37秒前
顺心的笑珊完成签到,获得积分10
40秒前
羞涩的傲菡完成签到,获得积分10
44秒前
46秒前
脑洞疼应助顺心的笑珊采纳,获得10
47秒前
51秒前
冷艳的语雪完成签到 ,获得积分10
52秒前
Amelie完成签到 ,获得积分10
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407525
求助须知:如何正确求助?哪些是违规求助? 4525110
关于积分的说明 14101161
捐赠科研通 4438888
什么是DOI,文献DOI怎么找? 2436526
邀请新用户注册赠送积分活动 1428500
关于科研通互助平台的介绍 1406528