Automatic detection and localization of thighbone fractures in X-ray based on improved deep learning method

人工智能 计算机视觉 深度学习 计算机科学 模式识别(心理学)
作者
Bin Guan,Jinkun Yao,Shaoquan Wang,Guoshan Zhang,Yueming Zhang,Xinbo Wang,Mengxuan Wang
出处
期刊:Computer Vision and Image Understanding [Elsevier BV]
卷期号:216: 103345-103345 被引量:13
标识
DOI:10.1016/j.cviu.2021.103345
摘要

Deep learning is continuously promoting the development of fracture detection in medical images. In this study, we propose a novel two-stage region-based convolutional neural network for thighbone fractures detection. In this framework, the new network structure is designed to balance the information of each feature map in the feature pyramid of ResNeXt. In experiments, the pre-trained model is implemented on the dataset reported in the previous study, which includes 3842 thighbone X-ray radiographs. To compare the proposed framework with the latest detection techniques, transfer learning is employed to test all the state-of-the-art generic object detection algorithms on the same thighbone fracture dataset. Moreover, a few ablation experiments are given to demonstrate the effects of each component employed in the proposed framework and different hyperparameter settings on fracture detection. The experimental results show that the Average Precision of the proposed detection framework reaches 88.9% in thighbone fracture detection. This result proves the effectiveness of our framework and its superiority over other state-of-the-art methods. • A new deep learning framework is designed to detect thighbone fractures in X-rays. • The network structure includes a reconstructed feature pyramid and a attention block. • Our framework achieves an AP of 88.9% and outperforms all existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
MrChew完成签到 ,获得积分10
1秒前
1秒前
wxy发布了新的文献求助10
2秒前
2秒前
Akim应助Mila采纳,获得10
2秒前
3秒前
3秒前
3秒前
3秒前
3秒前
小侯发布了新的文献求助10
3秒前
李思佳完成签到,获得积分20
4秒前
伏坎完成签到,获得积分20
4秒前
优雅的雨完成签到,获得积分10
4秒前
Chem34完成签到,获得积分10
4秒前
一个好昵称完成签到,获得积分10
4秒前
00发布了新的文献求助10
5秒前
静默完成签到 ,获得积分10
6秒前
好好学习发布了新的文献求助10
6秒前
陈陈陈介意完成签到,获得积分10
6秒前
6秒前
研友_LNB7rL完成签到 ,获得积分10
6秒前
7秒前
gc529发布了新的文献求助10
7秒前
酷波er应助王一正采纳,获得10
7秒前
淡淡从安完成签到 ,获得积分10
7秒前
7秒前
岁安关注了科研通微信公众号
7秒前
重要英姑完成签到,获得积分10
8秒前
8秒前
科研丘卡皮完成签到,获得积分10
8秒前
Lunar_发布了新的文献求助10
8秒前
CX330关注了科研通微信公众号
9秒前
zhuge完成签到 ,获得积分10
9秒前
9秒前
wxy完成签到,获得积分10
10秒前
加减乘除发布了新的文献求助10
10秒前
llyu发布了新的文献求助10
10秒前
慕青应助王三采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4556467
求助须知:如何正确求助?哪些是违规求助? 3984487
关于积分的说明 12335864
捐赠科研通 3654483
什么是DOI,文献DOI怎么找? 2013148
邀请新用户注册赠送积分活动 1048117
科研通“疑难数据库(出版商)”最低求助积分说明 936549