Automatic detection and localization of thighbone fractures in X-ray based on improved deep learning method

人工智能 计算机视觉 深度学习 计算机科学 模式识别(心理学)
作者
Bin Guan,Jinkun Yao,Shaoquan Wang,Guoshan Zhang,Yueming Zhang,Xinbo Wang,Mengxuan Wang
出处
期刊:Computer Vision and Image Understanding [Elsevier BV]
卷期号:216: 103345-103345 被引量:13
标识
DOI:10.1016/j.cviu.2021.103345
摘要

Deep learning is continuously promoting the development of fracture detection in medical images. In this study, we propose a novel two-stage region-based convolutional neural network for thighbone fractures detection. In this framework, the new network structure is designed to balance the information of each feature map in the feature pyramid of ResNeXt. In experiments, the pre-trained model is implemented on the dataset reported in the previous study, which includes 3842 thighbone X-ray radiographs. To compare the proposed framework with the latest detection techniques, transfer learning is employed to test all the state-of-the-art generic object detection algorithms on the same thighbone fracture dataset. Moreover, a few ablation experiments are given to demonstrate the effects of each component employed in the proposed framework and different hyperparameter settings on fracture detection. The experimental results show that the Average Precision of the proposed detection framework reaches 88.9% in thighbone fracture detection. This result proves the effectiveness of our framework and its superiority over other state-of-the-art methods. • A new deep learning framework is designed to detect thighbone fractures in X-rays. • The network structure includes a reconstructed feature pyramid and a attention block. • Our framework achieves an AP of 88.9% and outperforms all existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
神途完成签到,获得积分10
3秒前
derrrrrsin发布了新的文献求助10
3秒前
cici发布了新的文献求助10
5秒前
5秒前
小蘑菇应助大胆秋灵采纳,获得10
6秒前
6秒前
6秒前
7秒前
8秒前
啦啦啦完成签到,获得积分10
9秒前
10秒前
李钦发布了新的文献求助10
10秒前
13秒前
Rondab应助yang采纳,获得10
14秒前
14秒前
高高紫烟完成签到,获得积分20
14秒前
bkagyin应助科研通管家采纳,获得10
15秒前
CodeCraft应助科研通管家采纳,获得10
15秒前
15秒前
充电宝应助科研通管家采纳,获得30
15秒前
15秒前
15秒前
15秒前
pluto应助科研通管家采纳,获得10
15秒前
16秒前
16秒前
田様应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
华仔应助科研通管家采纳,获得10
16秒前
TWOTP完成签到,获得积分10
16秒前
CipherSage应助luoshiwen采纳,获得10
18秒前
忧郁小刺猬完成签到,获得积分10
18秒前
麦子发布了新的文献求助10
18秒前
汉堡包应助梓桐采纳,获得10
18秒前
穿裤子的发糕完成签到,获得积分20
18秒前
美好雨竹完成签到 ,获得积分10
18秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992868
求助须知:如何正确求助?哪些是违规求助? 3533689
关于积分的说明 11263515
捐赠科研通 3273441
什么是DOI,文献DOI怎么找? 1806049
邀请新用户注册赠送积分活动 882931
科研通“疑难数据库(出版商)”最低求助积分说明 809629