Linear Feature-Based Triangulation for Large-Scale Orthophoto Generation Over Mechanized Agricultural Fields

正射影像 束流调整 计算机科学 计算机视觉 摄影测量学 人工智能 弹道 三角测量 由运动产生的结构 共面性 比例(比率) 航空影像 遥感 特征(语言学) 过程(计算) 缩放空间 图像处理 数学 运动估计 图像(数学) 地理 操作系统 物理 天文 哲学 地图学 语言学 几何学
作者
Seyyed Meghdad Hasheminasab,Tian Zhou,Yi-Chun Lin,Ayman Habib
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-18 被引量:3
标识
DOI:10.1109/tgrs.2022.3167378
摘要

Unmanned aerial vehicles (UAVs) equipped with imaging and ranging sensors have become an effective remote sensing data acquisition tool for digital agriculture. Among potential products derived from UAVs, high-resolution orthophotos play an important role in several phenotyping activities, such as canopy cover estimation and flowering date identification. Current structure from motion (SfM) tools for image-based 3-D reconstruction and orthophoto generation cannot perform well when working with large-scale imagery over mechanized agricultural fields. This failure is mainly due to their inability to identify enough conjugate points among overlapping images captured at low altitudes. This study addresses such limitation through a new strategy that uses plant row segments as linear features in the triangulation process. The linear features are derived in two steps. First, an automated approach is implemented to extract plant row segments from the LiDAR data which are then back-projected to the imagery using available trajectory and system calibration parameters. In the second step, a machine-assisted strategy is used to adjust the line segments in image space for deriving accurate linear features. In the proposed framework, the triangulation process is conducted by investigating two mathematical models—referred to as object-space and image-space coplanarity constraints—for incorporating linear features in the bundle adjustment (BA). The orthophoto is generated using the refined trajectory and system calibration parameters derived from the BA process. Several experimental results over an agricultural filed show that the proposed framework outperforms commonly used SfM tools, e.g., Pix4D Mapper Pro and Agisoft Metashape in terms of generating orthophotos with high visual quality and geolocation accuracy. Also, results indicate that the object-space coplanarity constraint is more robust against potential noise in line measurements when compared to the image-space coplanarity model. However, both models lead to high absolute accuracy in the range of ±2–4 cm when the noise level in the image measurements of points along the line is reasonable, i.e., ~5–10 pixels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尼克11完成签到,获得积分10
1秒前
墨墨发布了新的文献求助10
2秒前
3秒前
3秒前
背后的千柳完成签到,获得积分10
4秒前
李健的小迷弟应助富富富采纳,获得10
4秒前
彭于晏应助唐军采纳,获得10
5秒前
5秒前
小二郎应助白桃采纳,获得10
5秒前
Kinn发布了新的文献求助30
6秒前
小马甲应助YJP采纳,获得10
6秒前
舍予完成签到 ,获得积分10
8秒前
8秒前
PhD_Lee73完成签到 ,获得积分10
8秒前
9秒前
9秒前
amber发布了新的文献求助20
10秒前
乐乐应助悦耳昊强采纳,获得10
11秒前
Charon发布了新的文献求助30
11秒前
12秒前
13秒前
板凳完成签到 ,获得积分10
14秒前
14秒前
Rec完成签到,获得积分10
14秒前
Bob发布了新的文献求助10
15秒前
Han发布了新的文献求助10
15秒前
独特靖巧发布了新的文献求助10
15秒前
kyo发布了新的文献求助10
15秒前
小情绪发布了新的文献求助10
17秒前
siriuslee99完成签到,获得积分10
18秒前
yuyuan完成签到,获得积分10
18秒前
大佬发布了新的文献求助10
20秒前
21秒前
21秒前
22秒前
可爱的函函应助wzj采纳,获得10
22秒前
揽月yue完成签到,获得积分10
22秒前
我睡觉不会困12138完成签到 ,获得积分10
25秒前
红岸发布了新的文献求助10
26秒前
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959467
求助须知:如何正确求助?哪些是违规求助? 3505690
关于积分的说明 11125214
捐赠科研通 3237503
什么是DOI,文献DOI怎么找? 1789202
邀请新用户注册赠送积分活动 871583
科研通“疑难数据库(出版商)”最低求助积分说明 802859