已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Linear Feature-Based Triangulation for Large-Scale Orthophoto Generation Over Mechanized Agricultural Fields

正射影像 束流调整 计算机科学 计算机视觉 摄影测量学 人工智能 弹道 三角测量 由运动产生的结构 共面性 比例(比率) 航空影像 遥感 特征(语言学) 过程(计算) 缩放空间 图像处理 数学 运动估计 图像(数学) 地理 语言学 哲学 物理 几何学 地图学 天文 操作系统
作者
Seyyed Meghdad Hasheminasab,Tian Zhou,Yi-Chun Lin,Ayman Habib
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-18 被引量:3
标识
DOI:10.1109/tgrs.2022.3167378
摘要

Unmanned aerial vehicles (UAVs) equipped with imaging and ranging sensors have become an effective remote sensing data acquisition tool for digital agriculture. Among potential products derived from UAVs, high-resolution orthophotos play an important role in several phenotyping activities, such as canopy cover estimation and flowering date identification. Current structure from motion (SfM) tools for image-based 3-D reconstruction and orthophoto generation cannot perform well when working with large-scale imagery over mechanized agricultural fields. This failure is mainly due to their inability to identify enough conjugate points among overlapping images captured at low altitudes. This study addresses such limitation through a new strategy that uses plant row segments as linear features in the triangulation process. The linear features are derived in two steps. First, an automated approach is implemented to extract plant row segments from the LiDAR data which are then back-projected to the imagery using available trajectory and system calibration parameters. In the second step, a machine-assisted strategy is used to adjust the line segments in image space for deriving accurate linear features. In the proposed framework, the triangulation process is conducted by investigating two mathematical models—referred to as object-space and image-space coplanarity constraints—for incorporating linear features in the bundle adjustment (BA). The orthophoto is generated using the refined trajectory and system calibration parameters derived from the BA process. Several experimental results over an agricultural filed show that the proposed framework outperforms commonly used SfM tools, e.g., Pix4D Mapper Pro and Agisoft Metashape in terms of generating orthophotos with high visual quality and geolocation accuracy. Also, results indicate that the object-space coplanarity constraint is more robust against potential noise in line measurements when compared to the image-space coplanarity model. However, both models lead to high absolute accuracy in the range of ±2–4 cm when the noise level in the image measurements of points along the line is reasonable, i.e., ~5–10 pixels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
我是老大应助鲤鱼越越采纳,获得10
2秒前
kkk完成签到,获得积分10
2秒前
龅牙苏完成签到,获得积分10
3秒前
乐乐应助总是烂结局采纳,获得10
3秒前
当麻发布了新的文献求助10
4秒前
搜集达人应助花花123采纳,获得10
4秒前
搞怪从波完成签到 ,获得积分10
9秒前
9秒前
Bystander完成签到 ,获得积分10
10秒前
11秒前
搞怪从波关注了科研通微信公众号
13秒前
13秒前
13秒前
14秒前
粗心的chen发布了新的文献求助10
14秒前
细心怀亦完成签到 ,获得积分10
15秒前
走走发布了新的文献求助10
19秒前
科研通AI5应助栀璃鸳挽采纳,获得10
20秒前
昏睡的洋葱完成签到,获得积分20
22秒前
科研通AI5应助liuwenjie采纳,获得10
23秒前
bkagyin应助liuwenjie采纳,获得10
27秒前
27秒前
tzz发布了新的文献求助10
29秒前
小熊猫发布了新的文献求助20
30秒前
ll发布了新的文献求助10
30秒前
31秒前
CLMY完成签到,获得积分10
31秒前
米米给米米的求助进行了留言
33秒前
科研通AI2S应助鱼鱼鱼采纳,获得10
33秒前
YifanWang应助夏瑞采纳,获得10
34秒前
走啊走应助zyj采纳,获得60
34秒前
阳光的枫叶完成签到 ,获得积分10
36秒前
科研通AI6应助tzz采纳,获得10
37秒前
Emma发布了新的文献求助10
37秒前
酷波er应助cccccgggmmm采纳,获得30
39秒前
你的头发乱了哦完成签到,获得积分10
39秒前
archiz发布了新的文献求助10
41秒前
故意不上钩的鱼应助夏瑞采纳,获得10
41秒前
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252897
求助须知:如何正确求助?哪些是违规求助? 4416496
关于积分的说明 13749852
捐赠科研通 4288649
什么是DOI,文献DOI怎么找? 2353022
邀请新用户注册赠送积分活动 1349787
关于科研通互助平台的介绍 1309434