亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Linear Feature-Based Triangulation for Large-Scale Orthophoto Generation Over Mechanized Agricultural Fields

正射影像 束流调整 计算机科学 计算机视觉 摄影测量学 人工智能 弹道 三角测量 由运动产生的结构 共面性 比例(比率) 航空影像 遥感 特征(语言学) 过程(计算) 缩放空间 图像处理 数学 运动估计 图像(数学) 地理 语言学 哲学 物理 几何学 地图学 天文 操作系统
作者
Seyyed Meghdad Hasheminasab,Tian Zhou,Yi-Chun Lin,Ayman Habib
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-18 被引量:3
标识
DOI:10.1109/tgrs.2022.3167378
摘要

Unmanned aerial vehicles (UAVs) equipped with imaging and ranging sensors have become an effective remote sensing data acquisition tool for digital agriculture. Among potential products derived from UAVs, high-resolution orthophotos play an important role in several phenotyping activities, such as canopy cover estimation and flowering date identification. Current structure from motion (SfM) tools for image-based 3-D reconstruction and orthophoto generation cannot perform well when working with large-scale imagery over mechanized agricultural fields. This failure is mainly due to their inability to identify enough conjugate points among overlapping images captured at low altitudes. This study addresses such limitation through a new strategy that uses plant row segments as linear features in the triangulation process. The linear features are derived in two steps. First, an automated approach is implemented to extract plant row segments from the LiDAR data which are then back-projected to the imagery using available trajectory and system calibration parameters. In the second step, a machine-assisted strategy is used to adjust the line segments in image space for deriving accurate linear features. In the proposed framework, the triangulation process is conducted by investigating two mathematical models—referred to as object-space and image-space coplanarity constraints—for incorporating linear features in the bundle adjustment (BA). The orthophoto is generated using the refined trajectory and system calibration parameters derived from the BA process. Several experimental results over an agricultural filed show that the proposed framework outperforms commonly used SfM tools, e.g., Pix4D Mapper Pro and Agisoft Metashape in terms of generating orthophotos with high visual quality and geolocation accuracy. Also, results indicate that the object-space coplanarity constraint is more robust against potential noise in line measurements when compared to the image-space coplanarity model. However, both models lead to high absolute accuracy in the range of ±2–4 cm when the noise level in the image measurements of points along the line is reasonable, i.e., ~5–10 pixels.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sunziy完成签到,获得积分10
1秒前
7秒前
10秒前
Lionnn完成签到 ,获得积分10
10秒前
11秒前
盛夏如花发布了新的文献求助10
12秒前
灵巧慕青发布了新的文献求助10
16秒前
Getlogger发布了新的文献求助10
17秒前
26秒前
Irene发布了新的文献求助10
32秒前
凉逗听完成签到,获得积分10
33秒前
Lucas应助明亮紫易采纳,获得10
40秒前
善学以致用应助Irene采纳,获得10
45秒前
汉堡包应助Getlogger采纳,获得10
48秒前
Panther完成签到,获得积分10
50秒前
mr_wang完成签到,获得积分10
50秒前
56秒前
灵巧慕青完成签到,获得积分10
57秒前
59秒前
小蘑菇应助科研通管家采纳,获得10
59秒前
乐乐应助科研通管家采纳,获得10
59秒前
隐形曼青应助科研通管家采纳,获得10
59秒前
为什么这样子完成签到,获得积分10
59秒前
爱听歌的明雪完成签到,获得积分20
1分钟前
科研通AI6应助纸鹤采纳,获得10
1分钟前
可爱的函函应助小花生采纳,获得10
1分钟前
充电宝应助小飞采纳,获得10
1分钟前
行走完成签到,获得积分10
1分钟前
所所应助兜里全是糖采纳,获得10
1分钟前
李忆梦完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
阿泽完成签到,获得积分10
1分钟前
John完成签到,获得积分10
1分钟前
华仔应助阿泽采纳,获得10
1分钟前
1分钟前
科研启动完成签到,获得积分10
1分钟前
kangkang发布了新的文献求助10
1分钟前
1234完成签到 ,获得积分10
1分钟前
2分钟前
Hello应助跳跃的小之采纳,获得10
2分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644502
求助须知:如何正确求助?哪些是违规求助? 4764327
关于积分的说明 15025209
捐赠科研通 4802884
什么是DOI,文献DOI怎么找? 2567685
邀请新用户注册赠送积分活动 1525344
关于科研通互助平台的介绍 1484802