Linear Feature-Based Triangulation for Large-Scale Orthophoto Generation Over Mechanized Agricultural Fields

正射影像 束流调整 计算机科学 计算机视觉 摄影测量学 人工智能 弹道 三角测量 由运动产生的结构 共面性 比例(比率) 航空影像 遥感 特征(语言学) 过程(计算) 缩放空间 图像处理 数学 运动估计 图像(数学) 地理 语言学 哲学 物理 几何学 地图学 天文 操作系统
作者
Seyyed Meghdad Hasheminasab,Tian Zhou,Yi-Chun Lin,Ayman Habib
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-18 被引量:3
标识
DOI:10.1109/tgrs.2022.3167378
摘要

Unmanned aerial vehicles (UAVs) equipped with imaging and ranging sensors have become an effective remote sensing data acquisition tool for digital agriculture. Among potential products derived from UAVs, high-resolution orthophotos play an important role in several phenotyping activities, such as canopy cover estimation and flowering date identification. Current structure from motion (SfM) tools for image-based 3-D reconstruction and orthophoto generation cannot perform well when working with large-scale imagery over mechanized agricultural fields. This failure is mainly due to their inability to identify enough conjugate points among overlapping images captured at low altitudes. This study addresses such limitation through a new strategy that uses plant row segments as linear features in the triangulation process. The linear features are derived in two steps. First, an automated approach is implemented to extract plant row segments from the LiDAR data which are then back-projected to the imagery using available trajectory and system calibration parameters. In the second step, a machine-assisted strategy is used to adjust the line segments in image space for deriving accurate linear features. In the proposed framework, the triangulation process is conducted by investigating two mathematical models—referred to as object-space and image-space coplanarity constraints—for incorporating linear features in the bundle adjustment (BA). The orthophoto is generated using the refined trajectory and system calibration parameters derived from the BA process. Several experimental results over an agricultural filed show that the proposed framework outperforms commonly used SfM tools, e.g., Pix4D Mapper Pro and Agisoft Metashape in terms of generating orthophotos with high visual quality and geolocation accuracy. Also, results indicate that the object-space coplanarity constraint is more robust against potential noise in line measurements when compared to the image-space coplanarity model. However, both models lead to high absolute accuracy in the range of ±2–4 cm when the noise level in the image measurements of points along the line is reasonable, i.e., ~5–10 pixels.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助潇笑采纳,获得10
刚刚
123发布了新的文献求助10
刚刚
英俊小兔子完成签到,获得积分20
1秒前
科目三应助AAAA采纳,获得10
1秒前
lumous完成签到,获得积分20
2秒前
Jared应助queer采纳,获得10
2秒前
淡然的胡萝卜完成签到 ,获得积分10
2秒前
2秒前
柯克完成签到,获得积分10
3秒前
MMTI完成签到,获得积分10
3秒前
光亮的千亦完成签到,获得积分10
3秒前
正直焦完成签到,获得积分10
5秒前
卢西奥发布了新的文献求助10
5秒前
情怀应助mmyhn采纳,获得10
5秒前
求助人员发布了新的文献求助10
5秒前
msd2phd完成签到,获得积分10
6秒前
Ava应助MNing采纳,获得10
7秒前
8秒前
8秒前
勤恳雅莉给小菜鸟001的求助进行了留言
8秒前
这么近那么远完成签到,获得积分20
9秒前
潇笑完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
ddddyooo完成签到,获得积分10
10秒前
11秒前
希望天下0贩的0应助勒71采纳,获得10
11秒前
ddddyooo发布了新的文献求助10
13秒前
13秒前
14秒前
轻舟完成签到,获得积分10
14秒前
14秒前
15秒前
Ya发布了新的文献求助10
16秒前
学无止境完成签到 ,获得积分10
16秒前
SciGPT应助queer采纳,获得30
16秒前
森淼完成签到,获得积分10
17秒前
Yang完成签到,获得积分10
17秒前
17秒前
儒雅惜海发布了新的文献求助10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577902
求助须知:如何正确求助?哪些是违规求助? 4662960
关于积分的说明 14743852
捐赠科研通 4603592
什么是DOI,文献DOI怎么找? 2526534
邀请新用户注册赠送积分活动 1496172
关于科研通互助平台的介绍 1465642