Linear Feature-Based Triangulation for Large-Scale Orthophoto Generation Over Mechanized Agricultural Fields

正射影像 束流调整 计算机科学 计算机视觉 摄影测量学 人工智能 弹道 三角测量 由运动产生的结构 共面性 比例(比率) 航空影像 遥感 特征(语言学) 过程(计算) 缩放空间 图像处理 数学 运动估计 图像(数学) 地理 语言学 哲学 物理 几何学 地图学 天文 操作系统
作者
Seyyed Meghdad Hasheminasab,Tian Zhou,Yi-Chun Lin,Ayman Habib
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-18 被引量:3
标识
DOI:10.1109/tgrs.2022.3167378
摘要

Unmanned aerial vehicles (UAVs) equipped with imaging and ranging sensors have become an effective remote sensing data acquisition tool for digital agriculture. Among potential products derived from UAVs, high-resolution orthophotos play an important role in several phenotyping activities, such as canopy cover estimation and flowering date identification. Current structure from motion (SfM) tools for image-based 3-D reconstruction and orthophoto generation cannot perform well when working with large-scale imagery over mechanized agricultural fields. This failure is mainly due to their inability to identify enough conjugate points among overlapping images captured at low altitudes. This study addresses such limitation through a new strategy that uses plant row segments as linear features in the triangulation process. The linear features are derived in two steps. First, an automated approach is implemented to extract plant row segments from the LiDAR data which are then back-projected to the imagery using available trajectory and system calibration parameters. In the second step, a machine-assisted strategy is used to adjust the line segments in image space for deriving accurate linear features. In the proposed framework, the triangulation process is conducted by investigating two mathematical models—referred to as object-space and image-space coplanarity constraints—for incorporating linear features in the bundle adjustment (BA). The orthophoto is generated using the refined trajectory and system calibration parameters derived from the BA process. Several experimental results over an agricultural filed show that the proposed framework outperforms commonly used SfM tools, e.g., Pix4D Mapper Pro and Agisoft Metashape in terms of generating orthophotos with high visual quality and geolocation accuracy. Also, results indicate that the object-space coplanarity constraint is more robust against potential noise in line measurements when compared to the image-space coplanarity model. However, both models lead to high absolute accuracy in the range of ±2–4 cm when the noise level in the image measurements of points along the line is reasonable, i.e., ~5–10 pixels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzz完成签到,获得积分10
1秒前
孤檠发布了新的文献求助10
2秒前
幽默泥猴桃完成签到,获得积分10
2秒前
李谢谢完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
mechefy完成签到 ,获得积分10
5秒前
5秒前
汉堡包应助Glu采纳,获得10
6秒前
洋洋发布了新的文献求助10
6秒前
6秒前
yuan发布了新的文献求助10
7秒前
Mzhao完成签到,获得积分10
7秒前
Hello应助建辰十五采纳,获得10
7秒前
hhhxmx完成签到,获得积分10
8秒前
不配.应助幸福采纳,获得10
8秒前
ncjdoi发布了新的文献求助10
8秒前
asdfj应助aurora采纳,获得10
8秒前
TRz发布了新的文献求助10
10秒前
在水一方应助zrw采纳,获得10
10秒前
时尚铁身完成签到 ,获得积分10
11秒前
鹏鹏完成签到,获得积分10
12秒前
就知道完成签到,获得积分10
12秒前
凉雨渲完成签到,获得积分20
12秒前
悦耳半梦完成签到,获得积分20
12秒前
111发布了新的文献求助10
12秒前
Glu完成签到,获得积分20
13秒前
huangzsdy发布了新的文献求助200
13秒前
123完成签到,获得积分10
14秒前
李爱国应助yuan采纳,获得10
16秒前
大白发布了新的文献求助10
16秒前
16秒前
20秒前
森林林林完成签到 ,获得积分10
20秒前
刻苦耳机发布了新的文献求助10
22秒前
22秒前
23秒前
林思完成签到,获得积分10
24秒前
杨文成完成签到,获得积分10
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135254
求助须知:如何正确求助?哪些是违规求助? 2786259
关于积分的说明 7776312
捐赠科研通 2442153
什么是DOI,文献DOI怎么找? 1298474
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600847