Linear Feature-Based Triangulation for Large-Scale Orthophoto Generation Over Mechanized Agricultural Fields

正射影像 束流调整 计算机科学 计算机视觉 摄影测量学 人工智能 弹道 三角测量 由运动产生的结构 共面性 比例(比率) 航空影像 遥感 特征(语言学) 过程(计算) 缩放空间 图像处理 数学 运动估计 图像(数学) 地理 语言学 哲学 物理 几何学 地图学 天文 操作系统
作者
Seyyed Meghdad Hasheminasab,Tian Zhou,Yi-Chun Lin,Ayman Habib
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-18 被引量:3
标识
DOI:10.1109/tgrs.2022.3167378
摘要

Unmanned aerial vehicles (UAVs) equipped with imaging and ranging sensors have become an effective remote sensing data acquisition tool for digital agriculture. Among potential products derived from UAVs, high-resolution orthophotos play an important role in several phenotyping activities, such as canopy cover estimation and flowering date identification. Current structure from motion (SfM) tools for image-based 3-D reconstruction and orthophoto generation cannot perform well when working with large-scale imagery over mechanized agricultural fields. This failure is mainly due to their inability to identify enough conjugate points among overlapping images captured at low altitudes. This study addresses such limitation through a new strategy that uses plant row segments as linear features in the triangulation process. The linear features are derived in two steps. First, an automated approach is implemented to extract plant row segments from the LiDAR data which are then back-projected to the imagery using available trajectory and system calibration parameters. In the second step, a machine-assisted strategy is used to adjust the line segments in image space for deriving accurate linear features. In the proposed framework, the triangulation process is conducted by investigating two mathematical models—referred to as object-space and image-space coplanarity constraints—for incorporating linear features in the bundle adjustment (BA). The orthophoto is generated using the refined trajectory and system calibration parameters derived from the BA process. Several experimental results over an agricultural filed show that the proposed framework outperforms commonly used SfM tools, e.g., Pix4D Mapper Pro and Agisoft Metashape in terms of generating orthophotos with high visual quality and geolocation accuracy. Also, results indicate that the object-space coplanarity constraint is more robust against potential noise in line measurements when compared to the image-space coplanarity model. However, both models lead to high absolute accuracy in the range of ±2–4 cm when the noise level in the image measurements of points along the line is reasonable, i.e., ~5–10 pixels.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
姚芭蕉完成签到 ,获得积分0
3秒前
冷冷完成签到 ,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
11秒前
5433完成签到 ,获得积分10
15秒前
哥哥完成签到,获得积分10
25秒前
arniu2008完成签到,获得积分20
26秒前
30秒前
qizhixu发布了新的文献求助10
35秒前
量子星尘发布了新的文献求助10
36秒前
喜悦向日葵完成签到 ,获得积分10
36秒前
生动友绿完成签到 ,获得积分10
46秒前
47秒前
47秒前
研友_LmVygn完成签到 ,获得积分10
48秒前
Hhhhh完成签到 ,获得积分10
48秒前
leilei完成签到,获得积分10
50秒前
科研顺利完成签到,获得积分10
50秒前
小张完成签到 ,获得积分10
52秒前
量子星尘发布了新的文献求助10
54秒前
小g完成签到,获得积分10
1分钟前
1分钟前
小白完成签到 ,获得积分10
1分钟前
wangruize发布了新的文献求助10
1分钟前
小蘑菇应助科研辣鸡采纳,获得10
1分钟前
wangruize完成签到,获得积分10
1分钟前
Drlee完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
wxyinhefeng完成签到 ,获得积分10
1分钟前
又又完成签到,获得积分0
1分钟前
我睡觉的时候不困完成签到 ,获得积分10
1分钟前
笨笨忘幽完成签到,获得积分10
1分钟前
秋夜临完成签到,获得积分0
1分钟前
悦耳的城完成签到 ,获得积分10
1分钟前
CLTTT完成签到,获得积分0
1分钟前
今我来思完成签到 ,获得积分10
1分钟前
Tong完成签到,获得积分0
1分钟前
gxzsdf完成签到 ,获得积分10
1分钟前
顺利的慕儿完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658393
求助须知:如何正确求助?哪些是违规求助? 4821042
关于积分的说明 15081375
捐赠科研通 4816884
什么是DOI,文献DOI怎么找? 2577797
邀请新用户注册赠送积分活动 1532632
关于科研通互助平台的介绍 1491313