Linear Feature-Based Triangulation for Large-Scale Orthophoto Generation Over Mechanized Agricultural Fields

正射影像 束流调整 计算机科学 计算机视觉 摄影测量学 人工智能 弹道 三角测量 由运动产生的结构 共面性 比例(比率) 航空影像 遥感 特征(语言学) 过程(计算) 缩放空间 图像处理 数学 运动估计 图像(数学) 地理 操作系统 物理 天文 哲学 地图学 语言学 几何学
作者
Seyyed Meghdad Hasheminasab,Tian Zhou,Yi-Chun Lin,Ayman Habib
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-18 被引量:3
标识
DOI:10.1109/tgrs.2022.3167378
摘要

Unmanned aerial vehicles (UAVs) equipped with imaging and ranging sensors have become an effective remote sensing data acquisition tool for digital agriculture. Among potential products derived from UAVs, high-resolution orthophotos play an important role in several phenotyping activities, such as canopy cover estimation and flowering date identification. Current structure from motion (SfM) tools for image-based 3-D reconstruction and orthophoto generation cannot perform well when working with large-scale imagery over mechanized agricultural fields. This failure is mainly due to their inability to identify enough conjugate points among overlapping images captured at low altitudes. This study addresses such limitation through a new strategy that uses plant row segments as linear features in the triangulation process. The linear features are derived in two steps. First, an automated approach is implemented to extract plant row segments from the LiDAR data which are then back-projected to the imagery using available trajectory and system calibration parameters. In the second step, a machine-assisted strategy is used to adjust the line segments in image space for deriving accurate linear features. In the proposed framework, the triangulation process is conducted by investigating two mathematical models—referred to as object-space and image-space coplanarity constraints—for incorporating linear features in the bundle adjustment (BA). The orthophoto is generated using the refined trajectory and system calibration parameters derived from the BA process. Several experimental results over an agricultural filed show that the proposed framework outperforms commonly used SfM tools, e.g., Pix4D Mapper Pro and Agisoft Metashape in terms of generating orthophotos with high visual quality and geolocation accuracy. Also, results indicate that the object-space coplanarity constraint is more robust against potential noise in line measurements when compared to the image-space coplanarity model. However, both models lead to high absolute accuracy in the range of ±2–4 cm when the noise level in the image measurements of points along the line is reasonable, i.e., ~5–10 pixels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助复杂如音采纳,获得10
刚刚
不安柠檬完成签到,获得积分20
1秒前
2秒前
犹豫灵凡发布了新的文献求助10
2秒前
浮游应助暗河采纳,获得20
2秒前
科研通AI6应助王猛采纳,获得30
2秒前
闫栋发布了新的文献求助10
2秒前
Hello应助yaooo采纳,获得10
3秒前
大眼的平松完成签到,获得积分10
4秒前
不安柠檬发布了新的文献求助30
4秒前
qiaoj2006完成签到,获得积分10
4秒前
5秒前
xing完成签到,获得积分10
5秒前
5秒前
6秒前
陆莹完成签到,获得积分10
6秒前
7秒前
明月朝灯发布了新的文献求助30
7秒前
7秒前
鬼王神完成签到,获得积分10
7秒前
mwwbhu完成签到,获得积分10
8秒前
yyyyy完成签到,获得积分10
8秒前
无极微光应助学习鱼采纳,获得20
9秒前
小二郎应助兜兜采纳,获得10
9秒前
传奇3应助www采纳,获得10
10秒前
沫沫完成签到 ,获得积分0
11秒前
stay完成签到,获得积分20
11秒前
从容道罡完成签到,获得积分10
11秒前
12秒前
MIN发布了新的文献求助10
12秒前
13秒前
小党完成签到,获得积分10
13秒前
李健应助yulk采纳,获得10
13秒前
13秒前
litchi发布了新的文献求助20
13秒前
13秒前
14秒前
昊昊发布了新的文献求助20
14秒前
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434688
求助须知:如何正确求助?哪些是违规求助? 4547007
关于积分的说明 14205516
捐赠科研通 4467012
什么是DOI,文献DOI怎么找? 2448380
邀请新用户注册赠送积分活动 1439285
关于科研通互助平台的介绍 1416060