TransUNetCD: A Hybrid Transformer Network for Change Detection in Optical Remote-Sensing Images

人工智能 模式识别(心理学) 特征(语言学) 计算机科学 加权 特征提取 变压器 卷积神经网络 解码方法 像素 算法 电压 量子力学 医学 物理 放射科 哲学 语言学
作者
Qingyang Li,Ruofei Zhong,Xin Du,Yu Du
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-19 被引量:194
标识
DOI:10.1109/tgrs.2022.3169479
摘要

In the change detection (CD) task, the UNet architecture has achieved superior results. However, due to the inherent limitation of convolution operations, UNet is inadequate in learning global context and long-range spatial relations. Transformers can capture long-range feature dependencies, but the lack of low-level details may result in limited localization capabilities. Therefore, this article proposes an end-to-end encoding–decoding hybrid transformer model for CD, TransUNetCD, which has the advantages of both transformers and UNet. The model encodes the tokenized image patches from the convolutional neural network (CNN) feature map to extract rich global context information. The decoder upsamples the encoded features, connects them with higher-resolution multiscale features through skip connections to learn local–global semantic features, and restores the full spatial resolution of the feature map to achieve precise localization. The model proposed in this article not only solves the problem that redundant information is generated when extracting low-level features under the UNet framework, but also solves the problem that the relationship between each feature layer cannot be fully modeled and the optimal feature difference representation cannot be obtained. On this basis, we introduce a difference enhancement module to generate a difference feature map containing rich change information. By weighting each pixel and selectively aggregating features, the effectiveness of the network and the accuracy of extracting changing features are improved. The results on multiple datasets demonstrate that, compared to state-of-the-art methods, the TransUNetCD can further reduce false alarms and missed alarms, and the edge of the changing area is more accurate. The model has the highest score in each metric than other baseline models and has a robust generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
枫于林完成签到 ,获得积分10
3秒前
4秒前
lml完成签到,获得积分10
4秒前
Mia发布了新的文献求助30
6秒前
RhapsodyHua完成签到,获得积分10
7秒前
8秒前
简单白风完成签到 ,获得积分10
10秒前
老默发布了新的文献求助10
10秒前
orixero应助29采纳,获得10
12秒前
希望天下0贩的0应助yiyi采纳,获得10
14秒前
小蘑菇应助carly采纳,获得10
15秒前
15秒前
Rondab应助科研通管家采纳,获得10
17秒前
YiyueChan完成签到,获得积分10
17秒前
water应助科研通管家采纳,获得10
17秒前
water应助科研通管家采纳,获得10
17秒前
Rondab应助科研通管家采纳,获得10
17秒前
Liufgui应助DianaRang采纳,获得10
17秒前
bkagyin应助科研通管家采纳,获得10
17秒前
Owen应助科研通管家采纳,获得10
17秒前
情怀应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
17秒前
17秒前
湖医小朱完成签到,获得积分10
19秒前
qqqq完成签到,获得积分10
20秒前
Good_小鬼完成签到,获得积分10
24秒前
cocolu完成签到,获得积分0
29秒前
hhhhuo完成签到,获得积分10
30秒前
852应助今今采纳,获得10
30秒前
12wsesd完成签到 ,获得积分10
33秒前
33秒前
yydragen应助火星上小小采纳,获得30
33秒前
35秒前
rong完成签到,获得积分20
36秒前
yiyi发布了新的文献求助10
36秒前
七七发布了新的文献求助10
39秒前
39秒前
充电宝应助开心的半仙采纳,获得10
40秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979648
求助须知:如何正确求助?哪些是违规求助? 3523618
关于积分的说明 11218147
捐赠科研通 3261119
什么是DOI,文献DOI怎么找? 1800416
邀请新用户注册赠送积分活动 879099
科研通“疑难数据库(出版商)”最低求助积分说明 807167