Slower than Expected Reduction in Annual Pm2.5 in Northwest China Revealed by Machine Learning-Based Meteorological Normalization

规范化(社会学) 中国 人工智能 环境科学 机器学习 地理 气象学 计算机科学 考古 社会学 人类学
作者
Meng Wang,Zhuozhi Zhang,Qi Yuan,Xinwei Li,Shuwen Han,Yuethang Lam,Long Cui,Yu Huang,Junji Cao,Shuncheng Lee
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.4096148
摘要

To evaluate the effectiveness of air pollution control policies, trend analysis of the air pollutants is often performed. However, trend analysis of air pollutants over multiple years is complicated by the fact that changes in meteorology over time can also affect the levels of air pollutants in addition to changes in emissions or atmospheric chemistry. To decouple the meteorological effect, this study performed a trend analysis of the hourly fine particulate matter (PM2.5) observed at an urban background site in Xi'an city over 5 years from 2015 to 2019 using the machine learning algorithm. Assuming the meteorological parameters were the same for 5 consecutive years, the impact of meteorological parameters was excluded, providing insights into the “real” changes in PM2.5 due to changes in emission strength or atmospheric chemistry. After meteorological normalization, a decreasing trend of −3.3%/year (−1.9 μg m-3/year) in PM2.5 after meteorological normalization was seen, instead of −4.4% from direct PM2.5 observation. Assuming the rate of −1.9 μg m-3/year were kept constant for the next few decades in Xi'an, it would take approximately 25 years (in the year 2045) to reduce the annual PM2.5 level to 10 μg m-3¬, the guideline value from World Health Organization. We also show that PM2.5 is primarily associated with anthropogenic emissions, which, underwent aqueous phase chemistry in winter and photochemical oxidation in summer as suggested by partial dependence of RH and Ox in different seasons. Therefore, reducing the anthropogenic secondary aerosol precursors at a higher rate, such as NOx and VOCs is expected to reduce the particulate pollution in this region more effectively than the current −3.3%/year found in this study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lym97完成签到 ,获得积分10
1秒前
高贵乌冬面完成签到 ,获得积分10
2秒前
4秒前
4秒前
鹊起完成签到 ,获得积分20
4秒前
王言发布了新的文献求助10
4秒前
了了完成签到 ,获得积分10
4秒前
瘦瘦绮发布了新的文献求助10
5秒前
深情安青应助轻松的囧采纳,获得10
5秒前
xr完成签到 ,获得积分10
6秒前
脑洞疼应助吴小小采纳,获得10
7秒前
Nafis发布了新的文献求助10
9秒前
9秒前
百里冰香完成签到 ,获得积分10
9秒前
9秒前
10秒前
肉丸完成签到 ,获得积分10
11秒前
舒适访曼完成签到 ,获得积分10
12秒前
12秒前
郑光英完成签到,获得积分10
13秒前
Linda发布了新的文献求助10
14秒前
15秒前
qqzhang发布了新的文献求助10
15秒前
13333发布了新的文献求助10
16秒前
周周发布了新的文献求助20
16秒前
Hou完成签到,获得积分10
16秒前
青青草原青草蛋糕完成签到 ,获得积分10
17秒前
gura完成签到 ,获得积分10
19秒前
wlscj应助白契采纳,获得20
19秒前
swh关闭了swh文献求助
20秒前
谨慎鹰发布了新的文献求助10
20秒前
Zhao完成签到 ,获得积分10
21秒前
21秒前
DIUDIU完成签到 ,获得积分10
21秒前
22秒前
22秒前
闪闪寄风完成签到,获得积分10
23秒前
24秒前
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5271518
求助须知:如何正确求助?哪些是违规求助? 4429192
关于积分的说明 13787815
捐赠科研通 4307460
什么是DOI,文献DOI怎么找? 2363567
邀请新用户注册赠送积分活动 1359231
关于科研通互助平台的介绍 1322167