已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Slower than Expected Reduction in Annual Pm2.5 in Northwest China Revealed by Machine Learning-Based Meteorological Normalization

规范化(社会学) 中国 人工智能 环境科学 机器学习 地理 气象学 计算机科学 考古 社会学 人类学
作者
Meng Wang,Zhuozhi Zhang,Qi Yuan,Xinwei Li,Shuwen Han,Yuethang Lam,Long Cui,Yu Huang,Junji Cao,Shuncheng Lee
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.4096148
摘要

To evaluate the effectiveness of air pollution control policies, trend analysis of the air pollutants is often performed. However, trend analysis of air pollutants over multiple years is complicated by the fact that changes in meteorology over time can also affect the levels of air pollutants in addition to changes in emissions or atmospheric chemistry. To decouple the meteorological effect, this study performed a trend analysis of the hourly fine particulate matter (PM2.5) observed at an urban background site in Xi'an city over 5 years from 2015 to 2019 using the machine learning algorithm. Assuming the meteorological parameters were the same for 5 consecutive years, the impact of meteorological parameters was excluded, providing insights into the “real” changes in PM2.5 due to changes in emission strength or atmospheric chemistry. After meteorological normalization, a decreasing trend of −3.3%/year (−1.9 μg m-3/year) in PM2.5 after meteorological normalization was seen, instead of −4.4% from direct PM2.5 observation. Assuming the rate of −1.9 μg m-3/year were kept constant for the next few decades in Xi'an, it would take approximately 25 years (in the year 2045) to reduce the annual PM2.5 level to 10 μg m-3¬, the guideline value from World Health Organization. We also show that PM2.5 is primarily associated with anthropogenic emissions, which, underwent aqueous phase chemistry in winter and photochemical oxidation in summer as suggested by partial dependence of RH and Ox in different seasons. Therefore, reducing the anthropogenic secondary aerosol precursors at a higher rate, such as NOx and VOCs is expected to reduce the particulate pollution in this region more effectively than the current −3.3%/year found in this study.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lianlian完成签到,获得积分10
刚刚
阿楷发布了新的文献求助10
1秒前
goodltl完成签到 ,获得积分10
2秒前
江江江发布了新的文献求助10
2秒前
Rainy完成签到 ,获得积分10
3秒前
领导范儿应助勤恳冰淇淋采纳,获得10
4秒前
严冥幽完成签到 ,获得积分0
5秒前
MingQue完成签到,获得积分0
6秒前
科研通AI6.1应助杨涛采纳,获得10
7秒前
8秒前
单纯的石头完成签到 ,获得积分10
9秒前
10秒前
10秒前
Carl完成签到 ,获得积分10
12秒前
123完成签到 ,获得积分10
12秒前
贝贝发布了新的文献求助50
13秒前
14秒前
思源应助吐丝麵包采纳,获得10
14秒前
哈牛柚子鹿完成签到,获得积分10
15秒前
17秒前
17秒前
17秒前
Owen应助江江江采纳,获得10
18秒前
potato0mud发布了新的文献求助10
20秒前
zhw应助勤恳冰淇淋采纳,获得10
21秒前
khawla完成签到,获得积分10
24秒前
leoskrrr完成签到,获得积分10
26秒前
Stroeve完成签到,获得积分10
30秒前
热塑性哈士奇完成签到,获得积分10
32秒前
katata完成签到 ,获得积分10
33秒前
嗨Honey完成签到 ,获得积分10
39秒前
SCINEXUS完成签到,获得积分0
46秒前
46秒前
47秒前
大帅比完成签到 ,获得积分10
49秒前
ww发布了新的文献求助10
49秒前
聪明绝顶完成签到,获得积分10
50秒前
52秒前
zhw应助勤恳冰淇淋采纳,获得10
55秒前
飞快的雁完成签到 ,获得积分10
56秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5787903
求助须知:如何正确求助?哪些是违规求助? 5702431
关于积分的说明 15473009
捐赠科研通 4916130
什么是DOI,文献DOI怎么找? 2646159
邀请新用户注册赠送积分活动 1593838
关于科研通互助平台的介绍 1548165