已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Slower than Expected Reduction in Annual Pm2.5 in Northwest China Revealed by Machine Learning-Based Meteorological Normalization

规范化(社会学) 中国 人工智能 环境科学 机器学习 地理 气象学 计算机科学 考古 社会学 人类学
作者
Meng Wang,Zhuozhi Zhang,Qi Yuan,Xinwei Li,Shuwen Han,Yuethang Lam,Long Cui,Yu Huang,Junji Cao,Shuncheng Lee
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.4096148
摘要

To evaluate the effectiveness of air pollution control policies, trend analysis of the air pollutants is often performed. However, trend analysis of air pollutants over multiple years is complicated by the fact that changes in meteorology over time can also affect the levels of air pollutants in addition to changes in emissions or atmospheric chemistry. To decouple the meteorological effect, this study performed a trend analysis of the hourly fine particulate matter (PM2.5) observed at an urban background site in Xi'an city over 5 years from 2015 to 2019 using the machine learning algorithm. Assuming the meteorological parameters were the same for 5 consecutive years, the impact of meteorological parameters was excluded, providing insights into the “real” changes in PM2.5 due to changes in emission strength or atmospheric chemistry. After meteorological normalization, a decreasing trend of −3.3%/year (−1.9 μg m-3/year) in PM2.5 after meteorological normalization was seen, instead of −4.4% from direct PM2.5 observation. Assuming the rate of −1.9 μg m-3/year were kept constant for the next few decades in Xi'an, it would take approximately 25 years (in the year 2045) to reduce the annual PM2.5 level to 10 μg m-3¬, the guideline value from World Health Organization. We also show that PM2.5 is primarily associated with anthropogenic emissions, which, underwent aqueous phase chemistry in winter and photochemical oxidation in summer as suggested by partial dependence of RH and Ox in different seasons. Therefore, reducing the anthropogenic secondary aerosol precursors at a higher rate, such as NOx and VOCs is expected to reduce the particulate pollution in this region more effectively than the current −3.3%/year found in this study.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shaoshao86完成签到,获得积分10
2秒前
Hvginn发布了新的文献求助10
3秒前
川荣李奈完成签到 ,获得积分10
5秒前
余生完成签到 ,获得积分10
8秒前
9秒前
久顾南川完成签到 ,获得积分10
10秒前
慕青应助白华苍松采纳,获得10
15秒前
00hello00发布了新的文献求助10
15秒前
Cope完成签到 ,获得积分10
15秒前
ljx完成签到 ,获得积分10
16秒前
FOD完成签到 ,获得积分10
18秒前
zcbb完成签到,获得积分10
21秒前
Bond完成签到 ,获得积分10
22秒前
23秒前
Owen应助科研通管家采纳,获得10
24秒前
所所应助科研通管家采纳,获得30
24秒前
领导范儿应助科研通管家采纳,获得10
24秒前
Honor完成签到 ,获得积分10
26秒前
tt完成签到 ,获得积分10
27秒前
喬老師完成签到,获得积分10
30秒前
落叶捎来讯息完成签到 ,获得积分10
31秒前
上官老师完成签到 ,获得积分10
32秒前
34秒前
FashionBoy应助柔弱绮兰采纳,获得10
34秒前
36秒前
王某完成签到 ,获得积分10
40秒前
白英完成签到,获得积分10
40秒前
ssdsfc发布了新的文献求助10
40秒前
40秒前
花陵完成签到 ,获得积分10
40秒前
hy完成签到 ,获得积分10
40秒前
YukiXu完成签到 ,获得积分10
41秒前
唐若冰完成签到,获得积分10
42秒前
44秒前
Miracle发布了新的文献求助10
46秒前
tkx是流氓兔完成签到,获得积分10
47秒前
dly完成签到 ,获得积分10
47秒前
行者发布了新的文献求助10
48秒前
柔弱绮兰发布了新的文献求助10
48秒前
峰妹完成签到 ,获得积分10
52秒前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
The recovery-stress questionnaires : user manual 600
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5854750
求助须知:如何正确求助?哪些是违规求助? 6300369
关于积分的说明 15632510
捐赠科研通 4969929
什么是DOI,文献DOI怎么找? 2680171
邀请新用户注册赠送积分活动 1624210
关于科研通互助平台的介绍 1580944

今日热心研友

注:热心度 = 本日应助数 + 本日被采纳获取积分÷10