Slower than Expected Reduction in Annual Pm2.5 in Northwest China Revealed by Machine Learning-Based Meteorological Normalization

规范化(社会学) 中国 人工智能 环境科学 机器学习 地理 气象学 计算机科学 考古 社会学 人类学
作者
Meng Wang,Zhuozhi Zhang,Qi Yuan,Xinwei Li,Shuwen Han,Yuethang Lam,Long Cui,Yu Huang,Junji Cao,Shuncheng Lee
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.4096148
摘要

To evaluate the effectiveness of air pollution control policies, trend analysis of the air pollutants is often performed. However, trend analysis of air pollutants over multiple years is complicated by the fact that changes in meteorology over time can also affect the levels of air pollutants in addition to changes in emissions or atmospheric chemistry. To decouple the meteorological effect, this study performed a trend analysis of the hourly fine particulate matter (PM2.5) observed at an urban background site in Xi'an city over 5 years from 2015 to 2019 using the machine learning algorithm. Assuming the meteorological parameters were the same for 5 consecutive years, the impact of meteorological parameters was excluded, providing insights into the “real” changes in PM2.5 due to changes in emission strength or atmospheric chemistry. After meteorological normalization, a decreasing trend of −3.3%/year (−1.9 μg m-3/year) in PM2.5 after meteorological normalization was seen, instead of −4.4% from direct PM2.5 observation. Assuming the rate of −1.9 μg m-3/year were kept constant for the next few decades in Xi'an, it would take approximately 25 years (in the year 2045) to reduce the annual PM2.5 level to 10 μg m-3¬, the guideline value from World Health Organization. We also show that PM2.5 is primarily associated with anthropogenic emissions, which, underwent aqueous phase chemistry in winter and photochemical oxidation in summer as suggested by partial dependence of RH and Ox in different seasons. Therefore, reducing the anthropogenic secondary aerosol precursors at a higher rate, such as NOx and VOCs is expected to reduce the particulate pollution in this region more effectively than the current −3.3%/year found in this study.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刻苦惜萍发布了新的文献求助10
刚刚
乐乐应助drughunter009采纳,获得10
刚刚
刚刚
眼睛大的念桃完成签到,获得积分10
1秒前
ZRBY发布了新的文献求助10
1秒前
无极微光应助健康的人生采纳,获得20
1秒前
冷酷月饼完成签到,获得积分10
1秒前
1秒前
1秒前
薛晓博完成签到,获得积分10
2秒前
orixero应助飞快的雨琴采纳,获得10
2秒前
冷漠的布丁完成签到,获得积分10
2秒前
yinyan完成签到,获得积分10
2秒前
psg完成签到,获得积分10
2秒前
2秒前
mushini发布了新的文献求助10
2秒前
2秒前
hao完成签到,获得积分10
3秒前
爱喝佳得乐完成签到,获得积分10
3秒前
张雯雯发布了新的文献求助10
3秒前
多发论文早毕业完成签到,获得积分10
3秒前
吉他平方完成签到,获得积分10
4秒前
天天快乐应助无辜的立轩采纳,获得10
4秒前
晚睡是小狗完成签到,获得积分10
4秒前
yangxx发布了新的文献求助10
4秒前
zsyhcl完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
影子发布了新的文献求助10
5秒前
Green完成签到,获得积分10
5秒前
cc完成签到 ,获得积分10
5秒前
吃葡萄不吐完成签到,获得积分10
6秒前
6秒前
jmy1995发布了新的文献求助10
6秒前
xxy完成签到,获得积分10
7秒前
燕子发布了新的文献求助10
7秒前
山复尔尔完成签到,获得积分10
7秒前
NexusExplorer应助刻苦惜萍采纳,获得10
7秒前
zy发布了新的文献求助10
8秒前
岁月静好完成签到,获得积分10
8秒前
优雅的水晶男孩完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005