Slower than Expected Reduction in Annual Pm2.5 in Northwest China Revealed by Machine Learning-Based Meteorological Normalization

规范化(社会学) 中国 人工智能 环境科学 机器学习 地理 气象学 计算机科学 考古 社会学 人类学
作者
Meng Wang,Zhuozhi Zhang,Qi Yuan,Xinwei Li,Shuwen Han,Yuethang Lam,Long Cui,Yu Huang,Junji Cao,Shuncheng Lee
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.4096148
摘要

To evaluate the effectiveness of air pollution control policies, trend analysis of the air pollutants is often performed. However, trend analysis of air pollutants over multiple years is complicated by the fact that changes in meteorology over time can also affect the levels of air pollutants in addition to changes in emissions or atmospheric chemistry. To decouple the meteorological effect, this study performed a trend analysis of the hourly fine particulate matter (PM2.5) observed at an urban background site in Xi'an city over 5 years from 2015 to 2019 using the machine learning algorithm. Assuming the meteorological parameters were the same for 5 consecutive years, the impact of meteorological parameters was excluded, providing insights into the “real” changes in PM2.5 due to changes in emission strength or atmospheric chemistry. After meteorological normalization, a decreasing trend of −3.3%/year (−1.9 μg m-3/year) in PM2.5 after meteorological normalization was seen, instead of −4.4% from direct PM2.5 observation. Assuming the rate of −1.9 μg m-3/year were kept constant for the next few decades in Xi'an, it would take approximately 25 years (in the year 2045) to reduce the annual PM2.5 level to 10 μg m-3¬, the guideline value from World Health Organization. We also show that PM2.5 is primarily associated with anthropogenic emissions, which, underwent aqueous phase chemistry in winter and photochemical oxidation in summer as suggested by partial dependence of RH and Ox in different seasons. Therefore, reducing the anthropogenic secondary aerosol precursors at a higher rate, such as NOx and VOCs is expected to reduce the particulate pollution in this region more effectively than the current −3.3%/year found in this study.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jz完成签到,获得积分10
刚刚
1秒前
乐乐应助个性的南珍采纳,获得10
1秒前
natuer发布了新的文献求助10
1秒前
达布妞完成签到,获得积分10
1秒前
顾矜应助旸羽采纳,获得10
1秒前
善学以致用应助aileen9190采纳,获得10
1秒前
2秒前
nn完成签到,获得积分10
2秒前
wanci应助科研通管家采纳,获得10
3秒前
3秒前
Orange应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
3秒前
烟花应助科研通管家采纳,获得20
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
chenhoe1212应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
彭于彦祖应助科研通管家采纳,获得30
4秒前
guantlv完成签到,获得积分10
4秒前
ymjssg应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
ZJ0315完成签到,获得积分10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624821
求助须知:如何正确求助?哪些是违规求助? 4710692
关于积分的说明 14951877
捐赠科研通 4778750
什么是DOI,文献DOI怎么找? 2553437
邀请新用户注册赠送积分活动 1515386
关于科研通互助平台的介绍 1475721