The effect of oxygen-containing species on corrosion behavior of Ta (1 1 0) surface: A DFT study with an experimental verification

钝化 吸附 氧气 工作职能 电化学 密度泛函理论 无机化学 电解质 化学 溶解 材料科学 腐蚀 金属 化学物理 物理化学 电极 计算化学 图层(电子) 纳米技术 冶金 有机化学
作者
Jiping Zhao,Youlong Xu,Shiheng Liu,Xiangdong Ding
出处
期刊:Applied Surface Science [Elsevier]
卷期号:586: 152810-152810 被引量:17
标识
DOI:10.1016/j.apsusc.2022.152810
摘要

• Oxygen is the main species responsible for tantalum passivation. • Adsorption of H 2 O molecules reduces the work function of Ta. • H 2 O molecule adsorption promotes corrosion of tantalum. Adsorption of oxygen-containing species on the surface of tantalum (Ta) electrode significantly affects its electrochemical corrosion behavior. Density-functional theory (DFT) is employed to investigate the adsorption energies, structural properties and electronic structures of atomic oxygen (O) and molecular water (H 2 O) on Ta (1 1 0) surface. The adsorption behavior of H 2 O at room temperature is also studied based on ab initio molecular dynamics (AIMD). We find the passivation of Ta metal is mainly attributed to the strong adsorption of oxygen atoms. Thermodynamic results show that bulk Ta 2 O 5 is easily formed at room temperature, which is the fundamental reason for the spontaneous passivation of Ta (1 1 0) surface. The formation of an oxygen monolayer (1.00 ML) on Ta (1 1 0) surface dramatically increases the work function, making the equilibrium potential of Ta electrode move in the positive direction, thus slowing down the corrosion rate of Ta metal. However, the adsorption of H 2 O causes a negative work function change, which promotes its anodic dissolution. The electrochemical impedance spectra (EIS) of tantalum foil in three different NH 4 F-methanol electrolytes (pure, 0.01 M water and oxygen saturated) shows that the charge transfer resistance increases in the sequence R H2O < R pure < R oxygen , which can be well explained by the results of DFT calculations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顺利毕业发布了新的文献求助80
刚刚
科研通AI6应助ning采纳,获得10
1秒前
2秒前
2秒前
2秒前
2秒前
2秒前
YH完成签到,获得积分10
2秒前
2秒前
周文鑫发布了新的文献求助10
3秒前
3秒前
宋宋发布了新的文献求助10
3秒前
重要的炳完成签到 ,获得积分10
3秒前
超体完成签到 ,获得积分10
3秒前
3秒前
顺心冬卉发布了新的文献求助10
4秒前
汉堡包应助zehua309采纳,获得10
4秒前
4秒前
4秒前
4秒前
充电宝应助知秋采纳,获得10
4秒前
科研通AI6应助天空之城采纳,获得10
4秒前
天天发布了新的文献求助10
5秒前
清心完成签到,获得积分20
5秒前
dsfsd发布了新的文献求助10
5秒前
NexusExplorer应助黄伟凯采纳,获得10
6秒前
6秒前
李健应助ayayaya采纳,获得10
6秒前
6秒前
6秒前
纯真晓灵发布了新的文献求助10
6秒前
科研通AI6应助1397采纳,获得10
6秒前
7秒前
祁无敌完成签到,获得积分0
7秒前
7秒前
hyacinth11111完成签到,获得积分10
7秒前
小豆发布了新的文献求助10
7秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661010
求助须知:如何正确求助?哪些是违规求助? 4836679
关于积分的说明 15093101
捐赠科研通 4819724
什么是DOI,文献DOI怎么找? 2579492
邀请新用户注册赠送积分活动 1533827
关于科研通互助平台的介绍 1492616