Composite Lung Transplant Suitability Score (CLaSS): A Novel Predictor of Survival Following Lung Transplantation

医学 单变量 逻辑回归 内科学 单变量分析 肺移植 移植 多元分析 多元统计 统计 数学
作者
Glen P. Westall,Hayley Barnes,Louise Fuller,Jane Harris,Christie Emsley,Greg Snell,B. Levvey,Toby Winton‐Brown
出处
期刊:Journal of Heart and Lung Transplantation [Elsevier BV]
卷期号:41 (4): S145-S145
标识
DOI:10.1016/j.healun.2022.01.340
摘要

Purpose Lung transplantation is indicated in patients with respiratory failure who progress despite optimal therapy. The selection of suitable transplant recipients considers internationally accepted absolute and relative contra-indications that are known to negatively influence survival, and typically involves a multi-disciplinary assessment. We assessed the impact on routinely collected pre-transplant variables on post-transplant survival and created a composite model that predicted post-transplant survival. Methods Adult patients (n = 916) undergoing lung transplant assessment at a single center between 2013 and 2021 had the following variables analyzed: age, gender, pre-transplant diagnosis, BMI, eGFR, HbA1c, albumin, 6-minute walk distance (6MWD) and Stanford Integrated Psychosocial Assessment for Transplant (SIPAT) score. Logistic regression was performed for post-transplant survival. Multiple imputation was used for missing data. Variables for inclusion in the final model were selected using backward elimination and confirmed using forward elimination (p-value <0.1). Internal validation of the model was performed using-one-out cross validation and 70/30 data split. Results Variables as assessed by univariate analysis predicting worse survival included pre-transplant diagnosis (CLAD), limited renal reserve and reduced 6MWD, with CLAD and 6MWD remaining significant predictors of death in the multivariate analysis. All variables were initially included in the predictive model, however the model performance improved with the selective inclusion of pre-transplant diagnosis, 6MWD and HbA1c (ROC 0.672, sensitivity 98.7%). Case examples demonstrated the practical utility of the model. Scenario #1. CF, HbA1c 5, Albumin 40 and 6MWD 400m; predicted probability of survival is 85%. Scenario #2. CLAD, HbA1c 5, albumin 20, 6MWD 250m; predicted probability of survival is 36%. Conclusion Using variables that are commonly collected during a pre-transplant assessment, we have created a clinically applicable model that predicts post-transplant survival. The model can aid in recipient selection and inform discussion with potential transplant candidates on expected post-transplant outcomes, including survival. Lung transplantation is indicated in patients with respiratory failure who progress despite optimal therapy. The selection of suitable transplant recipients considers internationally accepted absolute and relative contra-indications that are known to negatively influence survival, and typically involves a multi-disciplinary assessment. We assessed the impact on routinely collected pre-transplant variables on post-transplant survival and created a composite model that predicted post-transplant survival. Adult patients (n = 916) undergoing lung transplant assessment at a single center between 2013 and 2021 had the following variables analyzed: age, gender, pre-transplant diagnosis, BMI, eGFR, HbA1c, albumin, 6-minute walk distance (6MWD) and Stanford Integrated Psychosocial Assessment for Transplant (SIPAT) score. Logistic regression was performed for post-transplant survival. Multiple imputation was used for missing data. Variables for inclusion in the final model were selected using backward elimination and confirmed using forward elimination (p-value <0.1). Internal validation of the model was performed using-one-out cross validation and 70/30 data split. Variables as assessed by univariate analysis predicting worse survival included pre-transplant diagnosis (CLAD), limited renal reserve and reduced 6MWD, with CLAD and 6MWD remaining significant predictors of death in the multivariate analysis. All variables were initially included in the predictive model, however the model performance improved with the selective inclusion of pre-transplant diagnosis, 6MWD and HbA1c (ROC 0.672, sensitivity 98.7%). Case examples demonstrated the practical utility of the model. Scenario #1. CF, HbA1c 5, Albumin 40 and 6MWD 400m; predicted probability of survival is 85%. Scenario #2. CLAD, HbA1c 5, albumin 20, 6MWD 250m; predicted probability of survival is 36%. Using variables that are commonly collected during a pre-transplant assessment, we have created a clinically applicable model that predicts post-transplant survival. The model can aid in recipient selection and inform discussion with potential transplant candidates on expected post-transplant outcomes, including survival.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小彭友完成签到,获得积分10
1秒前
2秒前
josie完成签到 ,获得积分10
6秒前
llll完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
韭菜发布了新的文献求助10
6秒前
外向的斑马完成签到 ,获得积分10
7秒前
村长热爱美丽完成签到 ,获得积分10
9秒前
尹尹关注了科研通微信公众号
11秒前
呆呆完成签到 ,获得积分10
12秒前
xianyaoz完成签到 ,获得积分0
19秒前
杨远杰完成签到,获得积分10
20秒前
蓝桉完成签到 ,获得积分10
20秒前
JuliaWang完成签到 ,获得积分10
27秒前
无限的含羞草完成签到,获得积分10
28秒前
八二力完成签到 ,获得积分10
32秒前
韭菜发布了新的文献求助10
35秒前
情怀应助科研通管家采纳,获得30
38秒前
water应助科研通管家采纳,获得10
38秒前
JamesPei应助科研通管家采纳,获得10
38秒前
2012csc完成签到 ,获得积分0
40秒前
风清扬应助韭菜采纳,获得10
41秒前
WSY完成签到 ,获得积分10
42秒前
虞无声发布了新的文献求助10
43秒前
执着新蕾完成签到,获得积分10
45秒前
Vivian完成签到 ,获得积分10
48秒前
666完成签到 ,获得积分10
50秒前
55秒前
量子星尘发布了新的文献求助10
58秒前
蔡从安完成签到,获得积分10
58秒前
奥雷里亚诺完成签到 ,获得积分10
58秒前
不呆完成签到 ,获得积分10
59秒前
Cheung2121发布了新的文献求助30
59秒前
画龙完成签到,获得积分10
1分钟前
韭菜完成签到,获得积分20
1分钟前
Owen应助Cheung2121采纳,获得10
1分钟前
爱学习的小李完成签到 ,获得积分10
1分钟前
若水完成签到 ,获得积分10
1分钟前
SYLH应助tian采纳,获得10
1分钟前
脑洞疼应助tian采纳,获得10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038112
求助须知:如何正确求助?哪些是违规求助? 3575788
关于积分的说明 11373801
捐赠科研通 3305604
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022