Real Image Denoising With a Locally-Adaptive Bitonic Filter.

计算机科学 滤波器(信号处理) 自适应滤波器 噪音(视频) 降噪 中值滤波器 人工智能 非本地手段 高斯噪声 滤波器设计 核自适应滤波器 算法 模式识别(心理学) 计算机视觉
作者
Graham Treece
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 3151-3165
标识
DOI:10.1109/tip.2022.3164532
摘要

Image noise removal is a common problem with many proposed solutions. The current standard is set by learning-based approaches, however these are not appropriate in all scenarios, perhaps due to lack of training data or the need for predictability in novel circumstances. The bitonic filter is a non-learning-based filter for removing noise from signals, with a mathematical morphology (ranking) framework in which the signal is postulated to be locally bitonic (having only one minimum or maximum) over some domain of finite extent. A novel version of this filter is developed in this paper, with a domain that is locally-adaptive to the signal, and other adjustments to allow application to real image sensor noise. These lead to significant improvements in noise reduction performance at no cost to processing times. The new bitonic filter performs better than the block-matching 3D filter for high levels of additive white Gaussian noise. It also surpasses this and other more recent non-learning-based filters for two public data sets containing real image noise at various levels. This is despite an additional adjustment to the block-matching filter, which leads to significantly better performance than has previously been cited on these data sets. The new bitonic filter has a signal-to-noise ratio 2.4dB lower than the best learning-based techniques when they are optimally trained. However, the performance gap is closed completely when these techniques are trained on data sets not directly related to the benchmark data. This demonstrates what can be achieved with a predictable, explainable, entirely local technique, which makes no assumptions of repeating patterns either within an image or across images, and hence creates residual images which are well behaved even in very high noise. Since the filter does not require training, it can still be used in situations where training is either difficult or inappropriate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高高芷发布了新的文献求助10
刚刚
伈X发布了新的文献求助10
1秒前
科研八戒完成签到,获得积分10
1秒前
1秒前
香山叶正红完成签到 ,获得积分10
1秒前
1秒前
2秒前
Roche完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
5秒前
Owen应助xiaoxiao采纳,获得10
5秒前
5秒前
Profeto应助zx采纳,获得10
6秒前
huiry完成签到,获得积分10
6秒前
蘑菇屋应助lyn采纳,获得10
6秒前
6秒前
积极的绿竹完成签到,获得积分10
7秒前
GJL完成签到,获得积分10
7秒前
霍笑白完成签到,获得积分10
8秒前
nwds发布了新的文献求助10
8秒前
欢喜火关注了科研通微信公众号
8秒前
WSGQT发布了新的文献求助10
8秒前
8秒前
Kyrie完成签到,获得积分10
9秒前
9秒前
麻花完成签到,获得积分10
9秒前
10秒前
糖霜烤面包完成签到,获得积分10
11秒前
11秒前
chen完成签到,获得积分10
12秒前
12秒前
chen发布了新的文献求助10
12秒前
蓝兰完成签到,获得积分20
12秒前
13秒前
mumu关注了科研通微信公众号
13秒前
baihehuakai发布了新的文献求助10
13秒前
孤独绿柏发布了新的文献求助10
14秒前
土豆子完成签到,获得积分10
14秒前
CipherSage应助慕慕倾采纳,获得10
14秒前
14秒前
gzslwddhjx完成签到,获得积分10
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009254
求助须知:如何正确求助?哪些是违规求助? 3549107
关于积分的说明 11300780
捐赠科研通 3283530
什么是DOI,文献DOI怎么找? 1810370
邀请新用户注册赠送积分活动 886168
科研通“疑难数据库(出版商)”最低求助积分说明 811267