Real Image Denoising With a Locally-Adaptive Bitonic Filter.

计算机科学 滤波器(信号处理) 自适应滤波器 噪音(视频) 降噪 中值滤波器 人工智能 非本地手段 高斯噪声 滤波器设计 核自适应滤波器 算法 模式识别(心理学) 计算机视觉
作者
Graham Treece
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 3151-3165
标识
DOI:10.1109/tip.2022.3164532
摘要

Image noise removal is a common problem with many proposed solutions. The current standard is set by learning-based approaches, however these are not appropriate in all scenarios, perhaps due to lack of training data or the need for predictability in novel circumstances. The bitonic filter is a non-learning-based filter for removing noise from signals, with a mathematical morphology (ranking) framework in which the signal is postulated to be locally bitonic (having only one minimum or maximum) over some domain of finite extent. A novel version of this filter is developed in this paper, with a domain that is locally-adaptive to the signal, and other adjustments to allow application to real image sensor noise. These lead to significant improvements in noise reduction performance at no cost to processing times. The new bitonic filter performs better than the block-matching 3D filter for high levels of additive white Gaussian noise. It also surpasses this and other more recent non-learning-based filters for two public data sets containing real image noise at various levels. This is despite an additional adjustment to the block-matching filter, which leads to significantly better performance than has previously been cited on these data sets. The new bitonic filter has a signal-to-noise ratio 2.4dB lower than the best learning-based techniques when they are optimally trained. However, the performance gap is closed completely when these techniques are trained on data sets not directly related to the benchmark data. This demonstrates what can be achieved with a predictable, explainable, entirely local technique, which makes no assumptions of repeating patterns either within an image or across images, and hence creates residual images which are well behaved even in very high noise. Since the filter does not require training, it can still be used in situations where training is either difficult or inappropriate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助江睿曦采纳,获得10
1秒前
2秒前
小米粥发布了新的文献求助10
2秒前
3秒前
小镇青年发布了新的文献求助10
3秒前
4秒前
田田发布了新的文献求助10
5秒前
科研通AI6应助重要的菲鹰采纳,获得10
6秒前
桐桐应助王涛采纳,获得10
6秒前
浮游应助无私的砖头采纳,获得10
6秒前
就发酵罐完成签到,获得积分20
7秒前
8秒前
科研通AI6应助YJ采纳,获得10
9秒前
脑洞疼应助qinjiayin采纳,获得10
9秒前
gy发布了新的文献求助30
10秒前
oO完成签到 ,获得积分10
10秒前
10秒前
勤奋夏兰完成签到,获得积分10
11秒前
Steven发布了新的文献求助10
13秒前
Jasper应助王翔飞采纳,获得20
13秒前
14秒前
科研通AI6应助小米粥采纳,获得10
15秒前
16秒前
konya发布了新的文献求助30
17秒前
量子星尘发布了新的文献求助10
18秒前
19秒前
传奇3应助Mae采纳,获得10
20秒前
FashionBoy应助略略略采纳,获得10
22秒前
22秒前
和光同尘完成签到,获得积分10
24秒前
巫马完成签到 ,获得积分10
24秒前
bkagyin应助000采纳,获得10
24秒前
深情安青应助高路路采纳,获得10
25秒前
水果发布了新的文献求助10
26秒前
Author发布了新的文献求助10
27秒前
28秒前
28秒前
复杂的海完成签到,获得积分10
29秒前
酷波er应助Kaen采纳,获得10
30秒前
义气天真完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458536
求助须知:如何正确求助?哪些是违规求助? 4564580
关于积分的说明 14295673
捐赠科研通 4489566
什么是DOI,文献DOI怎么找? 2459081
邀请新用户注册赠送积分活动 1448892
关于科研通互助平台的介绍 1424474