Real Image Denoising With a Locally-Adaptive Bitonic Filter.

计算机科学 滤波器(信号处理) 自适应滤波器 噪音(视频) 降噪 中值滤波器 人工智能 非本地手段 高斯噪声 滤波器设计 核自适应滤波器 算法 模式识别(心理学) 计算机视觉
作者
Graham Treece
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 3151-3165
标识
DOI:10.1109/tip.2022.3164532
摘要

Image noise removal is a common problem with many proposed solutions. The current standard is set by learning-based approaches, however these are not appropriate in all scenarios, perhaps due to lack of training data or the need for predictability in novel circumstances. The bitonic filter is a non-learning-based filter for removing noise from signals, with a mathematical morphology (ranking) framework in which the signal is postulated to be locally bitonic (having only one minimum or maximum) over some domain of finite extent. A novel version of this filter is developed in this paper, with a domain that is locally-adaptive to the signal, and other adjustments to allow application to real image sensor noise. These lead to significant improvements in noise reduction performance at no cost to processing times. The new bitonic filter performs better than the block-matching 3D filter for high levels of additive white Gaussian noise. It also surpasses this and other more recent non-learning-based filters for two public data sets containing real image noise at various levels. This is despite an additional adjustment to the block-matching filter, which leads to significantly better performance than has previously been cited on these data sets. The new bitonic filter has a signal-to-noise ratio 2.4dB lower than the best learning-based techniques when they are optimally trained. However, the performance gap is closed completely when these techniques are trained on data sets not directly related to the benchmark data. This demonstrates what can be achieved with a predictable, explainable, entirely local technique, which makes no assumptions of repeating patterns either within an image or across images, and hence creates residual images which are well behaved even in very high noise. Since the filter does not require training, it can still be used in situations where training is either difficult or inappropriate.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星回二七完成签到,获得积分10
1秒前
1秒前
跳跃可仁完成签到,获得积分20
1秒前
小七发布了新的文献求助10
1秒前
iris2333发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
JuPP关注了科研通微信公众号
3秒前
3秒前
华仔应助Alone离殇采纳,获得10
3秒前
芬芬完成签到,获得积分10
4秒前
三七完成签到 ,获得积分10
4秒前
平淡依玉发布了新的文献求助10
4秒前
科目三应助yan123采纳,获得10
5秒前
桐桐应助星辰采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
淀粉发布了新的文献求助10
5秒前
Jared应助调皮的滑板采纳,获得10
6秒前
泽锦臻发布了新的文献求助10
6秒前
7秒前
煜清清发布了新的文献求助20
7秒前
威威发布了新的文献求助10
7秒前
9秒前
Criminology34应助收手吧大哥采纳,获得10
9秒前
9秒前
jz完成签到,获得积分10
9秒前
蛋蛋蛋丹完成签到 ,获得积分10
11秒前
11秒前
可乐完成签到,获得积分10
11秒前
kano发布了新的文献求助30
11秒前
小末发布了新的文献求助10
11秒前
科研小白发布了新的文献求助10
12秒前
潺潺流水完成签到,获得积分10
13秒前
阿海的发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
liu11发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545786
求助须知:如何正确求助?哪些是违规求助? 4631840
关于积分的说明 14622683
捐赠科研通 4573553
什么是DOI,文献DOI怎么找? 2507605
邀请新用户注册赠送积分活动 1484320
关于科研通互助平台的介绍 1455594