Real Image Denoising With a Locally-Adaptive Bitonic Filter.

计算机科学 滤波器(信号处理) 自适应滤波器 噪音(视频) 降噪 中值滤波器 人工智能 非本地手段 高斯噪声 滤波器设计 核自适应滤波器 算法 模式识别(心理学) 计算机视觉
作者
Graham Treece
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 3151-3165
标识
DOI:10.1109/tip.2022.3164532
摘要

Image noise removal is a common problem with many proposed solutions. The current standard is set by learning-based approaches, however these are not appropriate in all scenarios, perhaps due to lack of training data or the need for predictability in novel circumstances. The bitonic filter is a non-learning-based filter for removing noise from signals, with a mathematical morphology (ranking) framework in which the signal is postulated to be locally bitonic (having only one minimum or maximum) over some domain of finite extent. A novel version of this filter is developed in this paper, with a domain that is locally-adaptive to the signal, and other adjustments to allow application to real image sensor noise. These lead to significant improvements in noise reduction performance at no cost to processing times. The new bitonic filter performs better than the block-matching 3D filter for high levels of additive white Gaussian noise. It also surpasses this and other more recent non-learning-based filters for two public data sets containing real image noise at various levels. This is despite an additional adjustment to the block-matching filter, which leads to significantly better performance than has previously been cited on these data sets. The new bitonic filter has a signal-to-noise ratio 2.4dB lower than the best learning-based techniques when they are optimally trained. However, the performance gap is closed completely when these techniques are trained on data sets not directly related to the benchmark data. This demonstrates what can be achieved with a predictable, explainable, entirely local technique, which makes no assumptions of repeating patterns either within an image or across images, and hence creates residual images which are well behaved even in very high noise. Since the filter does not require training, it can still be used in situations where training is either difficult or inappropriate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
3秒前
4秒前
松果发布了新的文献求助30
4秒前
Lxx完成签到,获得积分10
4秒前
九三发布了新的文献求助10
6秒前
科研通AI5应助滚去看书采纳,获得10
6秒前
可知蝶恋花完成签到,获得积分10
6秒前
yw完成签到,获得积分10
6秒前
smily完成签到,获得积分10
8秒前
Li发布了新的文献求助10
8秒前
科研通AI5应助wryyyn采纳,获得10
10秒前
共享精神应助可知蝶恋花采纳,获得10
12秒前
13秒前
一颗蘑古力完成签到 ,获得积分10
13秒前
overcome完成签到 ,获得积分10
14秒前
14秒前
简单的涵阳完成签到 ,获得积分10
15秒前
所所应助九三采纳,获得10
15秒前
16秒前
怕黑的擎发布了新的文献求助10
17秒前
科研通AI5应助周恒胜采纳,获得10
17秒前
选波发布了新的文献求助10
17秒前
汽泡完成签到,获得积分10
17秒前
冷酷夜南发布了新的文献求助10
17秒前
碧蓝的以云完成签到,获得积分10
18秒前
18秒前
19秒前
20秒前
研友_VZG7GZ应助安详的觅风采纳,获得10
21秒前
陆家麟发布了新的文献求助20
21秒前
冬瓜完成签到,获得积分20
21秒前
23秒前
养乐多发布了新的文献求助10
24秒前
123qwe完成签到,获得积分10
24秒前
冬瓜发布了新的文献求助20
25秒前
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5196657
求助须知:如何正确求助?哪些是违规求助? 4378232
关于积分的说明 13635659
捐赠科研通 4233741
什么是DOI,文献DOI怎么找? 2322414
邀请新用户注册赠送积分活动 1320532
关于科研通互助平台的介绍 1270952