Real Image Denoising With a Locally-Adaptive Bitonic Filter.

计算机科学 滤波器(信号处理) 自适应滤波器 噪音(视频) 降噪 中值滤波器 人工智能 非本地手段 高斯噪声 滤波器设计 核自适应滤波器 算法 模式识别(心理学) 计算机视觉
作者
Graham Treece
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 3151-3165
标识
DOI:10.1109/tip.2022.3164532
摘要

Image noise removal is a common problem with many proposed solutions. The current standard is set by learning-based approaches, however these are not appropriate in all scenarios, perhaps due to lack of training data or the need for predictability in novel circumstances. The bitonic filter is a non-learning-based filter for removing noise from signals, with a mathematical morphology (ranking) framework in which the signal is postulated to be locally bitonic (having only one minimum or maximum) over some domain of finite extent. A novel version of this filter is developed in this paper, with a domain that is locally-adaptive to the signal, and other adjustments to allow application to real image sensor noise. These lead to significant improvements in noise reduction performance at no cost to processing times. The new bitonic filter performs better than the block-matching 3D filter for high levels of additive white Gaussian noise. It also surpasses this and other more recent non-learning-based filters for two public data sets containing real image noise at various levels. This is despite an additional adjustment to the block-matching filter, which leads to significantly better performance than has previously been cited on these data sets. The new bitonic filter has a signal-to-noise ratio 2.4dB lower than the best learning-based techniques when they are optimally trained. However, the performance gap is closed completely when these techniques are trained on data sets not directly related to the benchmark data. This demonstrates what can be achieved with a predictable, explainable, entirely local technique, which makes no assumptions of repeating patterns either within an image or across images, and hence creates residual images which are well behaved even in very high noise. Since the filter does not require training, it can still be used in situations where training is either difficult or inappropriate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助试遣愚忠采纳,获得10
1秒前
LIU发布了新的文献求助10
1秒前
可爱的函函应助奎奎采纳,获得10
1秒前
2秒前
宇文三德发布了新的文献求助10
2秒前
2秒前
汉堡包应助Kyros采纳,获得10
3秒前
传奇3应助YanDongXu采纳,获得10
5秒前
gghh完成签到 ,获得积分10
5秒前
6秒前
6秒前
哭泣的若翠完成签到,获得积分10
6秒前
wanci应助kento采纳,获得50
7秒前
9秒前
jin完成签到,获得积分10
10秒前
星辰大海应助宇文三德采纳,获得10
10秒前
烟花应助天玄一刀采纳,获得10
10秒前
paul发布了新的文献求助10
10秒前
11秒前
英姑应助dingtao采纳,获得10
11秒前
amg发布了新的文献求助10
12秒前
充电宝应助赵某人采纳,获得10
12秒前
13秒前
14秒前
潜龙发布了新的文献求助10
14秒前
15秒前
16秒前
16秒前
17秒前
奎奎完成签到,获得积分10
17秒前
Junzhuo Zhou完成签到,获得积分10
18秒前
丘比特应助yumi2225采纳,获得10
19秒前
paul完成签到,获得积分10
20秒前
20秒前
Jasper应助简单奎采纳,获得10
20秒前
哈哈完成签到,获得积分10
21秒前
凸凸凸完成签到 ,获得积分10
21秒前
Jason完成签到,获得积分10
21秒前
naturehome发布了新的文献求助10
22秒前
SciGPT应助小何采纳,获得10
22秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145597
求助须知:如何正确求助?哪些是违规求助? 2797033
关于积分的说明 7822546
捐赠科研通 2453369
什么是DOI,文献DOI怎么找? 1305607
科研通“疑难数据库(出版商)”最低求助积分说明 627514
版权声明 601464