Design of intelligent fire-fighting robot based on multi-sensor fusion and experimental study on fire scene patrol

计算机科学 机器人 消防 巡逻 运动规划 计算机视觉 蚁群优化算法 人工智能 传感器融合 火灾探测 实时计算 MATLAB语言 路径(计算) 模拟 热力学 操作系统 物理 有机化学 化学 程序设计语言 法学 政治学
作者
Shuo Zhang,Jiantao Yao,Ruochao Wang,Zisheng Liu,Chenhao Ma,Yingbin Wang,Yongsheng Zhao
出处
期刊:Robotics and Autonomous Systems [Elsevier]
卷期号:154: 104122-104122 被引量:19
标识
DOI:10.1016/j.robot.2022.104122
摘要

Based on the current situation that most fire-fighting robots are operated by humans and do not have independent planning and operation abilities, in this paper an intelligent fire-fighting robot is designed using multi-sensor fusion. The robot has the functions of automatic inspection and fire-fighting, and can integrate the information of the operational environment and make decisions based multi-sensor fusion. An improved path-planning mechanism is proposed in order to overcome some disadvantages of the ant colony optimization algorithm, such as its easy tendency to reach local optimal solutions, slow convergence speed and weak global searching ability. A comprehensive evaluation method of the improved ACO is established to quantify its relevance and effectiveness. A joint calibration scheme for the color and temperature information obtained using an infrared thermal imager and a binocular vision camera was designed, and the internal and external parameters and distortion coefficient of the camera were successfully obtained. Based on the principle of binocular vision, a fire source detection and location strategy is proposed. When a fire source is detected, the location of the fire source is determined quickly and rescue path planning can be carried out, which improves the intelligence level of the fire-fighting robot. Finally, MATLAB and ROS are used to analyze the improved algorithm, and a fire site patrolling experiment is carried out. The results showed that the improved ACO greatly improves the convergence, reduces the number of iterations and greatly shortens the length of the patrol path, while the robot can effectively determine the location of the fire source efficiently during independent patrols and sound alarms, which will save precious time for fire-fighting and emergency rescue personnel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ShiYuesjw完成签到 ,获得积分10
刚刚
尉迟冰蓝完成签到,获得积分10
2秒前
cjl发布了新的文献求助10
2秒前
wty关注了科研通微信公众号
3秒前
快乐紫青完成签到 ,获得积分10
4秒前
4秒前
嘉嘉子发布了新的文献求助10
4秒前
5秒前
LANER完成签到 ,获得积分10
8秒前
djbj2022发布了新的文献求助10
10秒前
小王发布了新的文献求助30
10秒前
丛柳发布了新的文献求助10
12秒前
慕山河完成签到,获得积分10
12秒前
领导范儿应助tooty采纳,获得10
12秒前
12秒前
14秒前
seven完成签到 ,获得积分10
15秒前
团结友爱完成签到,获得积分10
16秒前
逗乐乐完成签到,获得积分10
17秒前
cjl完成签到,获得积分10
18秒前
钱林关注了科研通微信公众号
18秒前
轻松戎发布了新的文献求助10
19秒前
英俊的铭应助淮泺采纳,获得10
19秒前
科研通AI2S应助轻松戎采纳,获得10
22秒前
柒蕲七完成签到,获得积分10
22秒前
从容的丹南完成签到 ,获得积分10
26秒前
你好完成签到,获得积分10
26秒前
27秒前
lwa完成签到,获得积分10
30秒前
淡定的萤给淡定的萤的求助进行了留言
31秒前
粥可温发布了新的文献求助10
32秒前
32秒前
Jara发布了新的文献求助10
32秒前
FashionBoy应助cc采纳,获得10
34秒前
科研通AI2S应助笑C采纳,获得10
34秒前
儒雅的香之完成签到,获得积分10
35秒前
SLB24发布了新的文献求助10
35秒前
深情安青应助LKT采纳,获得10
36秒前
37秒前
38秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343779
求助须知:如何正确求助?哪些是违规求助? 2970859
关于积分的说明 8645455
捐赠科研通 2650916
什么是DOI,文献DOI怎么找? 1451530
科研通“疑难数据库(出版商)”最低求助积分说明 672145
邀请新用户注册赠送积分活动 661681