清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Design of intelligent fire-fighting robot based on multi-sensor fusion and experimental study on fire scene patrol

计算机科学 机器人 消防 巡逻 运动规划 计算机视觉 蚁群优化算法 人工智能 传感器融合 火灾探测 实时计算 MATLAB语言 路径(计算) 模拟 热力学 操作系统 物理 有机化学 化学 程序设计语言 法学 政治学
作者
Shuo Zhang,Jiantao Yao,Ruochao Wang,Zisheng Liu,Chenhao Ma,Yingbin Wang,Yongsheng Zhao
出处
期刊:Robotics and Autonomous Systems [Elsevier BV]
卷期号:154: 104122-104122 被引量:28
标识
DOI:10.1016/j.robot.2022.104122
摘要

Based on the current situation that most fire-fighting robots are operated by humans and do not have independent planning and operation abilities, in this paper an intelligent fire-fighting robot is designed using multi-sensor fusion. The robot has the functions of automatic inspection and fire-fighting, and can integrate the information of the operational environment and make decisions based multi-sensor fusion. An improved path-planning mechanism is proposed in order to overcome some disadvantages of the ant colony optimization algorithm, such as its easy tendency to reach local optimal solutions, slow convergence speed and weak global searching ability. A comprehensive evaluation method of the improved ACO is established to quantify its relevance and effectiveness. A joint calibration scheme for the color and temperature information obtained using an infrared thermal imager and a binocular vision camera was designed, and the internal and external parameters and distortion coefficient of the camera were successfully obtained. Based on the principle of binocular vision, a fire source detection and location strategy is proposed. When a fire source is detected, the location of the fire source is determined quickly and rescue path planning can be carried out, which improves the intelligence level of the fire-fighting robot. Finally, MATLAB and ROS are used to analyze the improved algorithm, and a fire site patrolling experiment is carried out. The results showed that the improved ACO greatly improves the convergence, reduces the number of iterations and greatly shortens the length of the patrol path, while the robot can effectively determine the location of the fire source efficiently during independent patrols and sound alarms, which will save precious time for fire-fighting and emergency rescue personnel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乏味发布了新的文献求助10
2秒前
顾矜应助搞怪莫茗采纳,获得10
7秒前
亭2007完成签到 ,获得积分10
9秒前
12秒前
FashionBoy应助小蝴蝶采纳,获得10
13秒前
yshj完成签到 ,获得积分10
20秒前
27秒前
41秒前
乏味发布了新的文献求助10
46秒前
菠萝蜜完成签到 ,获得积分10
52秒前
1分钟前
lb001完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
creep2020完成签到,获得积分10
1分钟前
香蕉觅云应助科研通管家采纳,获得10
1分钟前
开心每一天完成签到 ,获得积分10
1分钟前
rockyshi完成签到 ,获得积分10
1分钟前
2分钟前
FashionBoy应助舒适以松采纳,获得10
2分钟前
搞怪莫茗发布了新的文献求助10
2分钟前
不再挨训完成签到 ,获得积分10
2分钟前
2分钟前
斯尼奇完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
斯尼奇发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
Yjj发布了新的文献求助10
3分钟前
可夫司机完成签到 ,获得积分10
3分钟前
田田完成签到 ,获得积分10
3分钟前
无花果应助科研通管家采纳,获得10
3分钟前
包容的剑完成签到 ,获得积分10
3分钟前
Liufgui应助乏味采纳,获得30
4分钟前
量子星尘发布了新的文献求助30
4分钟前
wujiwuhui完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015400
求助须知:如何正确求助?哪些是违规求助? 3555341
关于积分的说明 11317993
捐赠科研通 3288651
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812000