材料科学
超级电容器
电极
硒化物
纳米技术
电化学
电解质
储能
电池(电)
电化学能量转换
纳米颗粒
功率密度
电导率
过渡金属
化学工程
光电子学
功率(物理)
冶金
催化作用
化学
物理
硒
物理化学
量子力学
工程类
生物化学
作者
Pragati A. Shinde,Nilesh R. Chodankar,Mohammad Ali Abdelkareem,Swati J. Patil,Young‐Kyu Han,Khaled Elsaid,A.G. Olabi
出处
期刊:Small
[Wiley]
日期:2022-04-20
卷期号:18 (20)
被引量:65
标识
DOI:10.1002/smll.202200248
摘要
Transition metal selenides (TMSs) have enthused snowballing research and industrial attention due to their exclusive conductivity and redox activity features, holding them as great candidates for emerging electrochemical devices. However, the real-life utility of TMSs remains challenging owing to their convoluted synthesis process. Herein, a versatile in situ approach to design nanostructured TMSs for high-energy solid-state hybrid supercapacitors (HSCs) is demonstrated. Initially, the rose-nanopetal-like NiSe@Cu2 Se (NiCuSe) positive electrode and FeSe nanoparticles negative electrode are directly anchored on Cu foam via in situ conversion reactions. The complementary potential windows of NiCuSe and FeSe electrodes in aqueous electrolytes associated with the excellent electrical conductivity results in superior electrochemical features. The solid-state HSCs cell manages to work in a high voltage range of 0-1.6 V, delivers a high specific energy density of 87.6 Wh kg-1 at a specific power density of 914.3 W kg-1 and excellent cycle lifetime (91.3% over 10 000 cycles). The innovative insights and electrode design for high conductivity holds great pledge in inspiring material synthesis strategies. This work offers a feasible route to develop high-energy battery-type electrodes for next-generation hybrid energy storage systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI