Novel hybrid ensemble credit scoring model with stacking-based noise detection and weight assignment

计算机科学 机器学习 多数决原则 稳健性(进化) 集合预报 人工智能 集成学习 噪音(视频) 数据挖掘 原始数据 生物化学 基因 图像(数学) 化学 程序设计语言
作者
Jianrong Yao,Zhongyi Wang,Lu Wang,Meng Liu,Hui Jiang,Yuangao Chen
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:198: 116913-116913 被引量:24
标识
DOI:10.1016/j.eswa.2022.116913
摘要

Credit scoring is used to help financial institutions control default risks and reduce economic losses, and a variety of mainstream machine learning and data mining algorithms have been applied for this purpose. However, real-world datasets are generally noisy, which seriously affects the performance of credit scoring models. Among the mainstream strategies for handling noise, instance filtering may result in information loss, especially for hard-to-access credit datasets, and label noise correction may produce erroneous information in the dataset. In this study, to reduce the adverse impact of noisy data on the performance of classification algorithms, a novel hybrid ensemble credit scoring model with stacking-based noise detection and weight assignment is developed to remove or adapt noisy data in raw datasets and to form noise-detected training data to obtain excellent default risk prediction competence. Furthermore, a new weight assignment approach based on a cloud model is proposed, which is applied to calculate the weight values of the classifiers in the weighted voting ensemble model to improve the prediction accuracy of the proposed model. In this study, five public datasets are adopted using five performance metrics to evaluate the performance of the proposed model. The experimental results demonstrate good model prediction power and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wyw完成签到,获得积分10
1秒前
爆米花应助金不换采纳,获得10
1秒前
我是老大应助蔬菜人采纳,获得10
1秒前
任性访风完成签到,获得积分10
2秒前
喜多米430完成签到,获得积分10
2秒前
Zhixia完成签到,获得积分20
3秒前
畅快的寄松完成签到,获得积分10
3秒前
在水一方应助张医生采纳,获得10
3秒前
3秒前
雪莉酒完成签到,获得积分10
3秒前
顾矜应助wst1988采纳,获得10
4秒前
酷炫的飞薇完成签到,获得积分10
4秒前
客官们帮帮忙完成签到,获得积分10
4秒前
迅速向日葵应助龙舞星采纳,获得10
4秒前
4秒前
6秒前
南宫映榕完成签到,获得积分10
6秒前
peiqi佩奇完成签到,获得积分10
6秒前
FashionBoy应助3131879775采纳,获得10
6秒前
龙虾发票完成签到,获得积分10
6秒前
zty完成签到,获得积分10
6秒前
7秒前
ZZZ完成签到,获得积分10
7秒前
科研老白完成签到,获得积分10
7秒前
7秒前
Focus完成签到,获得积分20
7秒前
孟严青完成签到,获得积分0
8秒前
量子星尘发布了新的文献求助10
8秒前
合适台灯发布了新的文献求助30
8秒前
9秒前
杨幂发布了新的文献求助10
9秒前
XT666完成签到,获得积分10
9秒前
学术混子完成签到,获得积分10
9秒前
AA完成签到,获得积分10
9秒前
灵巧代柔完成签到,获得积分10
10秒前
糖豆豆吃豆豆完成签到,获得积分10
10秒前
无辜竺完成签到 ,获得积分10
11秒前
12秒前
xiongyuan完成签到,获得积分10
12秒前
司徒不正发布了新的文献求助30
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953688
求助须知:如何正确求助?哪些是违规求助? 3499494
关于积分的说明 11095814
捐赠科研通 3230038
什么是DOI,文献DOI怎么找? 1785859
邀请新用户注册赠送积分活动 869602
科研通“疑难数据库(出版商)”最低求助积分说明 801479