Novel hybrid ensemble credit scoring model with stacking-based noise detection and weight assignment

计算机科学 机器学习 多数决原则 稳健性(进化) 集合预报 人工智能 集成学习 噪音(视频) 数据挖掘 原始数据 图像(数学) 生物化学 化学 基因 程序设计语言
作者
Jianrong Yao,Zhongyi Wang,Lu Wang,Meng Liu,Hui Jiang,Yuangao Chen
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:198: 116913-116913 被引量:24
标识
DOI:10.1016/j.eswa.2022.116913
摘要

Credit scoring is used to help financial institutions control default risks and reduce economic losses, and a variety of mainstream machine learning and data mining algorithms have been applied for this purpose. However, real-world datasets are generally noisy, which seriously affects the performance of credit scoring models. Among the mainstream strategies for handling noise, instance filtering may result in information loss, especially for hard-to-access credit datasets, and label noise correction may produce erroneous information in the dataset. In this study, to reduce the adverse impact of noisy data on the performance of classification algorithms, a novel hybrid ensemble credit scoring model with stacking-based noise detection and weight assignment is developed to remove or adapt noisy data in raw datasets and to form noise-detected training data to obtain excellent default risk prediction competence. Furthermore, a new weight assignment approach based on a cloud model is proposed, which is applied to calculate the weight values of the classifiers in the weighted voting ensemble model to improve the prediction accuracy of the proposed model. In this study, five public datasets are adopted using five performance metrics to evaluate the performance of the proposed model. The experimental results demonstrate good model prediction power and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
欣欣完成签到 ,获得积分10
2秒前
休比里斯老板完成签到,获得积分10
3秒前
毛豆应助哭泣的采波采纳,获得10
9秒前
9秒前
chen0424完成签到,获得积分10
11秒前
英俊的铭应助xxx采纳,获得10
11秒前
13秒前
坚强莺发布了新的文献求助10
13秒前
zsy完成签到,获得积分10
13秒前
PHW完成签到,获得积分10
14秒前
跳跃仙人掌应助仙人掌采纳,获得20
14秒前
酷波er应助沐曦采纳,获得10
15秒前
NaCl完成签到 ,获得积分10
15秒前
leezhen完成签到,获得积分10
15秒前
斯文败类应助liyong采纳,获得10
15秒前
...发布了新的文献求助50
16秒前
18秒前
19秒前
19秒前
19秒前
乐乐应助七七七呀采纳,获得10
21秒前
标致的泥猴桃完成签到,获得积分10
22秒前
22秒前
xxx发布了新的文献求助10
24秒前
24秒前
砂锅粥发布了新的文献求助10
25秒前
顺时针完成签到,获得积分10
26秒前
design完成签到,获得积分10
26秒前
乐乐应助LabRat采纳,获得10
27秒前
liyong发布了新的文献求助10
28秒前
JamesPei应助温暖幻桃采纳,获得10
29秒前
31秒前
背后书双完成签到 ,获得积分10
32秒前
小二郎应助南华知识分子采纳,获得10
32秒前
wanci应助优秀老师采纳,获得10
33秒前
33秒前
小菜鸟001完成签到,获得积分10
36秒前
37秒前
38秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312139
求助须知:如何正确求助?哪些是违规求助? 2944769
关于积分的说明 8521299
捐赠科研通 2620463
什么是DOI,文献DOI怎么找? 1432849
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650115