MSANet: Multiscale Aggregation Network Integrating Spatial and Channel Information for Lung Nodule Detection

计算机科学 假阳性悖论 特征提取 模式识别(心理学) 特征(语言学) 人工智能 结核(地质) 排名(信息检索) 数据挖掘 语言学 生物 哲学 古生物学
作者
Zhitao Guo,Linlin Zhao,Jinli Yuan,Hengyong Yu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (6): 2547-2558 被引量:30
标识
DOI:10.1109/jbhi.2021.3131671
摘要

Improving the detection accuracy of pulmonary nodules plays an important role in the diagnosis and early treatment of lung cancer. In this paper, a multiscale aggregation network (MSANet), which integrates spatial and channel information, is proposed for 3D pulmonary nodule detection. MSANet is designed to improve the network's ability to extract information and realize multiscale information fusion. First, multiscale aggregation interaction strategies are used to extract multilevel features and avoid feature fusion interference caused by large resolution differences. These strategies can effectively integrate the contextual information of adjacent resolutions and help to detect different sized nodules. Second, the feature extraction module is designed for efficient channel attention and self-calibrated convolutions (ECA-SC) to enhance the interchannel and local spatial information. ECA-SC also recalibrates the features in the feature extraction process, which can realize adaptive learning of feature weights and enhance the information extraction ability of features. Third, the distribution ranking (DR) loss is introduced as the classification loss function to solve the problem of imbalanced data between positive and negative samples. The proposed MSANet is comprehensively compared with other pulmonary nodule detection networks on the LUNA16 dataset, and a CPM score of 0.920 is obtained. The results show that the sensitivity for detecting pulmonary nodules is improved and that the average number of false-positives is effectively reduced. The proposed method has advantages in pulmonary nodule detection and can effectively assist radiologists in pulmonary nodule detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mubiguo完成签到,获得积分20
刚刚
斯文败类应助zy采纳,获得10
刚刚
wxwx完成签到,获得积分10
刚刚
刚刚
1秒前
Qian完成签到,获得积分10
2秒前
给我一篇文献吧完成签到 ,获得积分10
2秒前
嘻嘻完成签到,获得积分10
3秒前
百里烬言发布了新的文献求助20
3秒前
自由莺完成签到 ,获得积分10
3秒前
3秒前
SUNYAOSUNYAO发布了新的文献求助10
3秒前
3秒前
Akim应助浩离采纳,获得10
4秒前
科研通AI6应助cubie001采纳,获得10
4秒前
香蕉觅云应助安静采纳,获得10
5秒前
5秒前
华仔应助ty采纳,获得10
5秒前
浮世之笙完成签到,获得积分10
5秒前
迷人的天抒完成签到,获得积分10
5秒前
5秒前
tdtk发布了新的文献求助10
5秒前
LiQi发布了新的文献求助10
6秒前
6秒前
090发布了新的文献求助10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
ZJPPPP发布了新的文献求助10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
Hilda007应助科研通管家采纳,获得30
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
打打应助科研通管家采纳,获得10
7秒前
嘻嘻嘻嘻嘻嘻完成签到,获得积分10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
空半月完成签到 ,获得积分10
7秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5337659
求助须知:如何正确求助?哪些是违规求助? 4474834
关于积分的说明 13926106
捐赠科研通 4369836
什么是DOI,文献DOI怎么找? 2401032
邀请新用户注册赠送积分活动 1394060
关于科研通互助平台的介绍 1365964