MSANet: Multiscale Aggregation Network Integrating Spatial and Channel Information for Lung Nodule Detection

计算机科学 假阳性悖论 特征提取 模式识别(心理学) 特征(语言学) 人工智能 结核(地质) 排名(信息检索) 数据挖掘 语言学 生物 哲学 古生物学
作者
Zhitao Guo,Linlin Zhao,Jinli Yuan,Hengyong Yu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (6): 2547-2558 被引量:30
标识
DOI:10.1109/jbhi.2021.3131671
摘要

Improving the detection accuracy of pulmonary nodules plays an important role in the diagnosis and early treatment of lung cancer. In this paper, a multiscale aggregation network (MSANet), which integrates spatial and channel information, is proposed for 3D pulmonary nodule detection. MSANet is designed to improve the network's ability to extract information and realize multiscale information fusion. First, multiscale aggregation interaction strategies are used to extract multilevel features and avoid feature fusion interference caused by large resolution differences. These strategies can effectively integrate the contextual information of adjacent resolutions and help to detect different sized nodules. Second, the feature extraction module is designed for efficient channel attention and self-calibrated convolutions (ECA-SC) to enhance the interchannel and local spatial information. ECA-SC also recalibrates the features in the feature extraction process, which can realize adaptive learning of feature weights and enhance the information extraction ability of features. Third, the distribution ranking (DR) loss is introduced as the classification loss function to solve the problem of imbalanced data between positive and negative samples. The proposed MSANet is comprehensively compared with other pulmonary nodule detection networks on the LUNA16 dataset, and a CPM score of 0.920 is obtained. The results show that the sensitivity for detecting pulmonary nodules is improved and that the average number of false-positives is effectively reduced. The proposed method has advantages in pulmonary nodule detection and can effectively assist radiologists in pulmonary nodule detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
wenge发布了新的文献求助10
1秒前
充电宝应助aaaaaa采纳,获得10
1秒前
小胖熊完成签到,获得积分10
1秒前
1111发布了新的文献求助10
1秒前
无花果应助RR采纳,获得10
2秒前
2秒前
3秒前
vince发布了新的文献求助10
3秒前
3秒前
一方通行发布了新的文献求助10
3秒前
升升升呀发布了新的文献求助30
3秒前
想啊想发布了新的文献求助10
4秒前
细心的雪晴完成签到,获得积分20
4秒前
小二郎应助王王碎冰冰采纳,获得10
4秒前
4秒前
4秒前
6秒前
Ulrica完成签到,获得积分10
6秒前
6秒前
虞美人发布了新的文献求助10
6秒前
周灿灿完成签到,获得积分10
7秒前
研友_nv4M28完成签到,获得积分0
7秒前
qwe完成签到,获得积分10
7秒前
ddy完成签到,获得积分10
7秒前
7秒前
雨醉东风完成签到,获得积分10
7秒前
充电宝应助sm采纳,获得10
7秒前
7秒前
arizaki7应助玩命的兔子采纳,获得10
7秒前
科研通AI6应助smile采纳,获得10
7秒前
小马甲应助fffff采纳,获得10
7秒前
淡淡翠曼给突突突的求助进行了留言
7秒前
1111完成签到,获得积分20
8秒前
英勇映波发布了新的文献求助10
8秒前
文献搜索小能手完成签到,获得积分10
8秒前
小小完成签到,获得积分10
8秒前
ZYH关闭了ZYH文献求助
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546187
求助须知:如何正确求助?哪些是违规求助? 4631987
关于积分的说明 14624329
捐赠科研通 4573690
什么是DOI,文献DOI怎么找? 2507760
邀请新用户注册赠送积分活动 1484385
关于科研通互助平台的介绍 1455688