MSANet: Multiscale Aggregation Network Integrating Spatial and Channel Information for Lung Nodule Detection

计算机科学 假阳性悖论 特征提取 模式识别(心理学) 特征(语言学) 人工智能 结核(地质) 排名(信息检索) 数据挖掘 语言学 生物 哲学 古生物学
作者
Zhitao Guo,Linlin Zhao,Jinli Yuan,Hengyong Yu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (6): 2547-2558 被引量:30
标识
DOI:10.1109/jbhi.2021.3131671
摘要

Improving the detection accuracy of pulmonary nodules plays an important role in the diagnosis and early treatment of lung cancer. In this paper, a multiscale aggregation network (MSANet), which integrates spatial and channel information, is proposed for 3D pulmonary nodule detection. MSANet is designed to improve the network's ability to extract information and realize multiscale information fusion. First, multiscale aggregation interaction strategies are used to extract multilevel features and avoid feature fusion interference caused by large resolution differences. These strategies can effectively integrate the contextual information of adjacent resolutions and help to detect different sized nodules. Second, the feature extraction module is designed for efficient channel attention and self-calibrated convolutions (ECA-SC) to enhance the interchannel and local spatial information. ECA-SC also recalibrates the features in the feature extraction process, which can realize adaptive learning of feature weights and enhance the information extraction ability of features. Third, the distribution ranking (DR) loss is introduced as the classification loss function to solve the problem of imbalanced data between positive and negative samples. The proposed MSANet is comprehensively compared with other pulmonary nodule detection networks on the LUNA16 dataset, and a CPM score of 0.920 is obtained. The results show that the sensitivity for detecting pulmonary nodules is improved and that the average number of false-positives is effectively reduced. The proposed method has advantages in pulmonary nodule detection and can effectively assist radiologists in pulmonary nodule detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助血绣采纳,获得10
刚刚
2秒前
2秒前
Orange应助枕星采纳,获得10
2秒前
li完成签到,获得积分10
3秒前
CodeCraft应助积极擎汉采纳,获得10
3秒前
4秒前
费劲来到这的Rua完成签到,获得积分10
4秒前
曼珠沙华发布了新的文献求助10
5秒前
worrysyx完成签到,获得积分10
7秒前
huihui发布了新的文献求助10
7秒前
星辰大海应助sasa采纳,获得10
8秒前
10秒前
10秒前
11秒前
拉长的问晴完成签到,获得积分10
11秒前
科研通AI6应助坚果采纳,获得30
11秒前
王冠男完成签到,获得积分10
12秒前
12秒前
12秒前
banboo完成签到,获得积分10
14秒前
爆米花应助yyy采纳,获得10
15秒前
慕青应助qin采纳,获得10
16秒前
大个应助井哥儿采纳,获得10
16秒前
血绣发布了新的文献求助10
16秒前
闪闪秋寒完成签到 ,获得积分10
17秒前
LingYi完成签到,获得积分10
17秒前
郭琳完成签到,获得积分10
17秒前
lsc完成签到,获得积分10
18秒前
psc完成签到,获得积分10
19秒前
花成花完成签到,获得积分10
20秒前
20秒前
20秒前
SciGPT应助huihui采纳,获得10
20秒前
王冠男发布了新的文献求助30
20秒前
细心的思天完成签到 ,获得积分10
24秒前
25秒前
朴素的士晋完成签到 ,获得积分10
25秒前
26秒前
猪蹄发布了新的文献求助10
26秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588492
求助须知:如何正确求助?哪些是违规求助? 4671582
关于积分的说明 14787884
捐赠科研通 4625454
什么是DOI,文献DOI怎么找? 2531836
邀请新用户注册赠送积分活动 1500428
关于科研通互助平台的介绍 1468314