MSANet: Multiscale Aggregation Network Integrating Spatial and Channel Information for Lung Nodule Detection

计算机科学 假阳性悖论 特征提取 模式识别(心理学) 特征(语言学) 人工智能 结核(地质) 排名(信息检索) 数据挖掘 语言学 生物 哲学 古生物学
作者
Zhitao Guo,Linlin Zhao,Jinli Yuan,Hengyong Yu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (6): 2547-2558 被引量:28
标识
DOI:10.1109/jbhi.2021.3131671
摘要

Improving the detection accuracy of pulmonary nodules plays an important role in the diagnosis and early treatment of lung cancer. In this paper, a multiscale aggregation network (MSANet), which integrates spatial and channel information, is proposed for 3D pulmonary nodule detection. MSANet is designed to improve the network's ability to extract information and realize multiscale information fusion. First, multiscale aggregation interaction strategies are used to extract multilevel features and avoid feature fusion interference caused by large resolution differences. These strategies can effectively integrate the contextual information of adjacent resolutions and help to detect different sized nodules. Second, the feature extraction module is designed for efficient channel attention and self-calibrated convolutions (ECA-SC) to enhance the interchannel and local spatial information. ECA-SC also recalibrates the features in the feature extraction process, which can realize adaptive learning of feature weights and enhance the information extraction ability of features. Third, the distribution ranking (DR) loss is introduced as the classification loss function to solve the problem of imbalanced data between positive and negative samples. The proposed MSANet is comprehensively compared with other pulmonary nodule detection networks on the LUNA16 dataset, and a CPM score of 0.920 is obtained. The results show that the sensitivity for detecting pulmonary nodules is improved and that the average number of false-positives is effectively reduced. The proposed method has advantages in pulmonary nodule detection and can effectively assist radiologists in pulmonary nodule detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JacksonHe完成签到,获得积分10
1秒前
linnazhu完成签到,获得积分10
1秒前
吮指鸡发布了新的文献求助10
1秒前
时尚战斗机应助断舍离采纳,获得10
2秒前
uu完成签到,获得积分10
3秒前
4秒前
4秒前
乐乐完成签到,获得积分10
4秒前
HelloJoey完成签到,获得积分10
5秒前
6秒前
KATHY完成签到,获得积分10
6秒前
mj789完成签到,获得积分10
6秒前
8秒前
8秒前
晓君完成签到,获得积分10
8秒前
阿猩a完成签到 ,获得积分10
9秒前
9秒前
10秒前
soil应助纳斯达克采纳,获得20
11秒前
AKKKK发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
13秒前
何pulapula完成签到 ,获得积分10
14秒前
彭于彦祖应助博修采纳,获得50
14秒前
14秒前
15秒前
JacksonHe发布了新的文献求助10
15秒前
左左右右发布了新的文献求助10
18秒前
Ruan发布了新的文献求助30
19秒前
笑点低怀亦完成签到,获得积分10
19秒前
郑凯歌完成签到,获得积分10
20秒前
卡卡西应助阳光的问雁采纳,获得30
20秒前
情怀应助小学教材全解采纳,获得10
21秒前
Sheperd发布了新的文献求助10
21秒前
陆小齐完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
25秒前
白斯特发布了新的文献求助10
25秒前
1234556完成签到,获得积分10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969884
求助须知:如何正确求助?哪些是违规求助? 3514604
关于积分的说明 11174901
捐赠科研通 3249928
什么是DOI,文献DOI怎么找? 1795149
邀请新用户注册赠送积分活动 875599
科研通“疑难数据库(出版商)”最低求助积分说明 804891