亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MSANet: Multiscale Aggregation Network Integrating Spatial and Channel Information for Lung Nodule Detection

计算机科学 假阳性悖论 特征提取 模式识别(心理学) 特征(语言学) 人工智能 结核(地质) 排名(信息检索) 数据挖掘 语言学 生物 哲学 古生物学
作者
Zhitao Guo,Linlin Zhao,Jinli Yuan,Hengyong Yu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (6): 2547-2558 被引量:30
标识
DOI:10.1109/jbhi.2021.3131671
摘要

Improving the detection accuracy of pulmonary nodules plays an important role in the diagnosis and early treatment of lung cancer. In this paper, a multiscale aggregation network (MSANet), which integrates spatial and channel information, is proposed for 3D pulmonary nodule detection. MSANet is designed to improve the network's ability to extract information and realize multiscale information fusion. First, multiscale aggregation interaction strategies are used to extract multilevel features and avoid feature fusion interference caused by large resolution differences. These strategies can effectively integrate the contextual information of adjacent resolutions and help to detect different sized nodules. Second, the feature extraction module is designed for efficient channel attention and self-calibrated convolutions (ECA-SC) to enhance the interchannel and local spatial information. ECA-SC also recalibrates the features in the feature extraction process, which can realize adaptive learning of feature weights and enhance the information extraction ability of features. Third, the distribution ranking (DR) loss is introduced as the classification loss function to solve the problem of imbalanced data between positive and negative samples. The proposed MSANet is comprehensively compared with other pulmonary nodule detection networks on the LUNA16 dataset, and a CPM score of 0.920 is obtained. The results show that the sensitivity for detecting pulmonary nodules is improved and that the average number of false-positives is effectively reduced. The proposed method has advantages in pulmonary nodule detection and can effectively assist radiologists in pulmonary nodule detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助111111采纳,获得10
3秒前
接q辣舞完成签到,获得积分10
10秒前
lyulyuch221发布了新的文献求助10
13秒前
执着尔曼完成签到,获得积分20
13秒前
英勇的梨愁完成签到 ,获得积分10
15秒前
斯文败类应助wyh采纳,获得10
15秒前
Auralis完成签到 ,获得积分10
16秒前
22秒前
arrebol完成签到,获得积分20
23秒前
wciphone发布了新的文献求助10
37秒前
Aray完成签到 ,获得积分10
37秒前
浮游应助arrebol采纳,获得10
37秒前
科研通AI6应助arrebol采纳,获得10
37秒前
39秒前
Li发布了新的文献求助30
43秒前
Moss发布了新的文献求助10
44秒前
YXYYXYYXY完成签到,获得积分10
49秒前
粗心的千柔完成签到,获得积分10
51秒前
科研通AI2S应助科研通管家采纳,获得10
52秒前
乐乐应助科研通管家采纳,获得10
53秒前
星辰大海应助科研通管家采纳,获得10
53秒前
53秒前
科研通AI2S应助科研通管家采纳,获得10
53秒前
科目三应助科研通管家采纳,获得10
53秒前
54秒前
wyh发布了新的文献求助10
56秒前
Moss完成签到,获得积分10
56秒前
zly完成签到 ,获得积分10
57秒前
ChenLan发布了新的文献求助10
58秒前
1分钟前
搞怪岂愈完成签到,获得积分10
1分钟前
顾矜应助Li采纳,获得30
1分钟前
wackykao完成签到 ,获得积分10
1分钟前
1分钟前
vicky完成签到 ,获得积分10
1分钟前
忘川完成签到,获得积分10
1分钟前
1分钟前
wyh发布了新的文献求助30
1分钟前
香蕉觅云应助ChenLan采纳,获得30
1分钟前
庞贝完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401243
求助须知:如何正确求助?哪些是违规求助? 4520182
关于积分的说明 14079110
捐赠科研通 4433320
什么是DOI,文献DOI怎么找? 2434080
邀请新用户注册赠送积分活动 1426263
关于科研通互助平台的介绍 1404864