Surface defects inspection of cylindrical metal workpieces based on weakly supervised learning

卷积神经网络 人工智能 计算机科学 块(置换群论) 稳健性(进化) 特征(语言学) 模式识别(心理学) 人工神经网络 分割 深度学习 残余物 计算机视觉 算法 数学 生物化学 几何学 基因 哲学 语言学 化学
作者
Mu Ye,Weiwei Zhang,Guohua Cui,Xiaolan Wang
出处
期刊:The International Journal of Advanced Manufacturing Technology [Springer Nature]
卷期号:119 (3-4): 1933-1949 被引量:6
标识
DOI:10.1007/s00170-021-08399-z
摘要

Weakly supervised learning applies image tag labels to train convolutional neural networks to locate defect. In industrial vision system, metal surface is anisotropic under light in all directions and it is inevitable to cause local overexposure due to the natural reflection of active strong light, especially on the cylindrical metal surface. In this paper, injector valve is taken as the representative of cylindrical metal workpieces. Since the variety and complexity of cylindrical metal workpiece defects which cause pixel-level annotation require expensive manual work. This problem hinders the application of convolutional neural network in industries. In order to solve these above challenges, this paper proposed an end-to-end weakly supervised learning framework named Integrated Residual Attention Convolutional Neural Network (IRA-CNN). IRA-CNN only uses image tag annotation for training and performs defect classification and defect segmentation simultaneously. Weakly supervised learning is achieved by extracting category-related spatial features from defect classification scores. IRA-CNN is composed of multiple Integrated Residual Attention Block (IRA-Block) as the feature extractor which improves the accuracy and achieves real-time performance. IRA-Block adds Integrated Attention Module (IAM) which includes channel attention submodule and spatial attention submodule. The channel attention submodule adaptively extracts the channel attention feature map to improve its bilateral nonlinearity and the robustness. IAM can be well integrated into the IRA-CNN makes the neural network suppress the interference of useless background area and highlight the defect area. Satisfied performance is achieved by the proposed method in our own defect dataset which could meet the requirements in the industrial process. Experimental results show that the method has good generalization ability. The accuracy of defect classification reaches 97.84% and the segmentation accuracy is significantly improved compared with the benchmark method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
栗荔发布了新的文献求助10
刚刚
刚刚
橘络发布了新的文献求助10
3秒前
mokmok发布了新的文献求助10
4秒前
4秒前
小小发布了新的文献求助30
5秒前
6秒前
积极搞学术-503完成签到,获得积分10
6秒前
自然完成签到,获得积分10
7秒前
搜集达人应助水123采纳,获得10
7秒前
脑洞疼应助阳光怀亦采纳,获得10
8秒前
迪迦发布了新的文献求助10
11秒前
11秒前
11秒前
科研通AI2S应助大佬采纳,获得10
11秒前
酷波er应助文静三颜采纳,获得10
12秒前
tczw667完成签到,获得积分10
12秒前
善学以致用应助小喻采纳,获得10
12秒前
15秒前
nicezhutou完成签到 ,获得积分10
16秒前
科目三应助橘络采纳,获得10
16秒前
17秒前
Earuan发布了新的文献求助10
17秒前
丁叮发布了新的文献求助10
17秒前
zhang发布了新的文献求助20
19秒前
jonghuang发布了新的文献求助10
20秒前
香蕉觅云应助JDQW采纳,获得10
20秒前
野性的柠檬完成签到,获得积分20
20秒前
qqqq完成签到,获得积分10
21秒前
21秒前
英俊的馒头完成签到,获得积分10
23秒前
qqqq发布了新的文献求助10
23秒前
25秒前
烟花应助懒得起名采纳,获得10
27秒前
Mea关闭了Mea文献求助
27秒前
jonghuang完成签到,获得积分10
28秒前
zzm发布了新的文献求助10
28秒前
31秒前
Rencal完成签到 ,获得积分10
32秒前
33秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459066
求助须知:如何正确求助?哪些是违规求助? 3053650
关于积分的说明 9037605
捐赠科研通 2742924
什么是DOI,文献DOI怎么找? 1504562
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694589