Surface defects inspection of cylindrical metal workpieces based on weakly supervised learning

卷积神经网络 人工智能 计算机科学 块(置换群论) 稳健性(进化) 特征(语言学) 模式识别(心理学) 人工神经网络 分割 深度学习 残余物 计算机视觉 算法 数学 生物化学 几何学 基因 哲学 语言学 化学
作者
Mu Ye,Weiwei Zhang,Guohua Cui,Xiaolan Wang
出处
期刊:The International Journal of Advanced Manufacturing Technology [Springer Science+Business Media]
卷期号:119 (3-4): 1933-1949 被引量:6
标识
DOI:10.1007/s00170-021-08399-z
摘要

Weakly supervised learning applies image tag labels to train convolutional neural networks to locate defect. In industrial vision system, metal surface is anisotropic under light in all directions and it is inevitable to cause local overexposure due to the natural reflection of active strong light, especially on the cylindrical metal surface. In this paper, injector valve is taken as the representative of cylindrical metal workpieces. Since the variety and complexity of cylindrical metal workpiece defects which cause pixel-level annotation require expensive manual work. This problem hinders the application of convolutional neural network in industries. In order to solve these above challenges, this paper proposed an end-to-end weakly supervised learning framework named Integrated Residual Attention Convolutional Neural Network (IRA-CNN). IRA-CNN only uses image tag annotation for training and performs defect classification and defect segmentation simultaneously. Weakly supervised learning is achieved by extracting category-related spatial features from defect classification scores. IRA-CNN is composed of multiple Integrated Residual Attention Block (IRA-Block) as the feature extractor which improves the accuracy and achieves real-time performance. IRA-Block adds Integrated Attention Module (IAM) which includes channel attention submodule and spatial attention submodule. The channel attention submodule adaptively extracts the channel attention feature map to improve its bilateral nonlinearity and the robustness. IAM can be well integrated into the IRA-CNN makes the neural network suppress the interference of useless background area and highlight the defect area. Satisfied performance is achieved by the proposed method in our own defect dataset which could meet the requirements in the industrial process. Experimental results show that the method has good generalization ability. The accuracy of defect classification reaches 97.84% and the segmentation accuracy is significantly improved compared with the benchmark method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助快乐马采纳,获得10
刚刚
88C真是太神奇啦完成签到,获得积分10
刚刚
潇洒的平松完成签到,获得积分10
1秒前
隐形曼青应助Songsong采纳,获得10
2秒前
3秒前
Orange应助DrYang采纳,获得10
3秒前
4秒前
000发布了新的文献求助10
4秒前
Clover完成签到 ,获得积分10
5秒前
小妮子发布了新的文献求助10
8秒前
还单身的惜文完成签到 ,获得积分10
8秒前
Xiaoxiao举报rh1006求助涉嫌违规
8秒前
Neo完成签到,获得积分10
9秒前
12秒前
二三发布了新的文献求助10
13秒前
Cindy完成签到,获得积分10
13秒前
稳重翠完成签到 ,获得积分10
14秒前
psycho完成签到,获得积分10
15秒前
666发布了新的文献求助10
16秒前
一直完成签到,获得积分20
18秒前
我是老大应助科研通管家采纳,获得10
19秒前
FashionBoy应助科研通管家采纳,获得10
19秒前
茶送白粥应助科研通管家采纳,获得10
19秒前
茶送白粥应助科研通管家采纳,获得10
20秒前
茶送白粥应助科研通管家采纳,获得10
20秒前
香蕉觅云应助科研通管家采纳,获得10
20秒前
桐桐应助科研通管家采纳,获得10
20秒前
20秒前
ED应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
21秒前
Hz发布了新的文献求助10
22秒前
学术小天才完成签到,获得积分10
24秒前
24秒前
明天见发布了新的文献求助10
25秒前
科目三应助666采纳,获得10
26秒前
在水一方应助勤劳糜采纳,获得10
26秒前
糯米糍发布了新的文献求助20
26秒前
稳重翠发布了新的文献求助10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966223
求助须知:如何正确求助?哪些是违规求助? 3511662
关于积分的说明 11159065
捐赠科研通 3246265
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874331
科研通“疑难数据库(出版商)”最低求助积分说明 804343