Prediction of Freezing of Gait in Parkinson's Disease Using Unilateral and Bilateral Plantar-Pressure Data

假阳性悖论 步态 物理医学与康复 可穿戴计算机 计算机科学 人工智能 医学 嵌入式系统
作者
Scott Pardoel,Julie Nantel,Jonathan Kofman,Edward D. Lemaire
出处
期刊:Frontiers in Neurology [Frontiers Media SA]
卷期号:13 被引量:14
标识
DOI:10.3389/fneur.2022.831063
摘要

Freezing of gait (FOG) is an intermittent walking disturbance experienced by people with Parkinson's disease (PD). FOG has been linked to falling, injury, and overall reduced mobility. Wearable sensor-based devices can detect freezes already in progress and provide a cue to help the person resume walking. While this is helpful, predicting FOG episodes before onset and providing a timely cue may prevent the freeze from occurring. Wearable sensors mounted on various body parts have been used to develop FOG prediction systems. Despite the known asymmetry of PD motor symptom manifestation, the difference between the most affected side (MAS) and least affected side (LAS) is rarely considered in FOG detection and prediction studies.To examine the effect of using data from the MAS, LAS, or both limbs for FOG prediction, plantar pressure data were collected during a series of walking trials and used to extract time and frequency-based features. Three datasets were created using plantar pressure data from the MAS, LAS, and both sides together. ReliefF feature selection was performed. FOG prediction models were trained using the top 5, 10, 15, 20, 25, or 30 features for each dataset.The best models were the MAS model with 15 features and the LAS and bilateral models with 5 features. The LAS model had the highest sensitivity (79.5%) and identified the highest percentage of FOG episodes (94.9%). The MAS model achieved the highest specificity (84.9%) and lowest false positive rate (1.9 false positives/walking trial). Overall, the bilateral model was best with 77.3% sensitivity and 82.9% specificity. In addition, the bilateral model identified 94.2% of FOG episodes an average of 0.8 s before FOG onset. Compared to the bilateral model, the LAS model had a higher false positive rate; however, the bilateral and LAS models were similar in all the other evaluation metrics.The LAS model would have similar FOG prediction performance to the bilateral model at the cost of slightly more false positives. Given the advantages of single sensor systems, the increased false positive rate may be acceptable to people with PD. Therefore, a single plantar pressure sensor placed on the LAS could be used to develop a FOG prediction system and produce performance similar to a bilateral system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
H哈完成签到,获得积分10
刚刚
PaoPao完成签到,获得积分10
刚刚
ceeray23发布了新的文献求助30
1秒前
ll完成签到,获得积分10
1秒前
科研通AI2S应助chenqinqin采纳,获得10
2秒前
王栋完成签到,获得积分20
2秒前
蒙蒙细雨完成签到,获得积分10
3秒前
shijiaoshou完成签到,获得积分10
3秒前
无极微光应助tjnusq采纳,获得20
3秒前
彭于晏应助施梦得采纳,获得10
4秒前
5秒前
栗松琛发布了新的文献求助10
5秒前
zc发布了新的文献求助10
6秒前
小陈发布了新的文献求助10
6秒前
LONG完成签到 ,获得积分10
6秒前
小劲劲发布了新的文献求助10
6秒前
ahua完成签到 ,获得积分10
7秒前
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
沁晨完成签到,获得积分10
8秒前
JIA完成签到,获得积分10
8秒前
Hezzzz完成签到,获得积分10
8秒前
xiaos完成签到,获得积分10
9秒前
zhangj完成签到 ,获得积分10
10秒前
nn发布了新的文献求助10
10秒前
ZZX完成签到,获得积分10
11秒前
儒雅的蜜粉完成签到,获得积分10
11秒前
leo发布了新的文献求助10
12秒前
12秒前
17312852068完成签到 ,获得积分10
12秒前
驿路梨花完成签到,获得积分10
12秒前
大漂亮完成签到,获得积分20
13秒前
yao关注了科研通微信公众号
13秒前
小陈完成签到,获得积分20
14秒前
Loeop完成签到,获得积分10
14秒前
14秒前
elivsZhou发布了新的文献求助10
14秒前
李可乐完成签到,获得积分10
14秒前
科研通AI6应助XXXX采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977