Spatial–temporal seizure detection with graph attention network and bi-directional LSTM architecture

计算机科学 建筑 人工智能 图形 利用 模式识别(心理学) 理论计算机科学 计算机安全 历史 考古
作者
Jiatong He,Jia Cui,Gaobo Zhang,Mingrui Xue,Dengyu Chu,Yanna Zhao
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:78: 103908-103908 被引量:23
标识
DOI:10.1016/j.bspc.2022.103908
摘要

The automatic detection of epileptic seizures by Electroencephalogram (EEG) can accelerate the diagnosis of the disease by neurologists, which is of incredible importance for the treatment of patients with epilepsy. However, current works on EEG-based seizure detection do not fully exploit the spatial–temporal information of EEG channels. In order to tackle this problem, we propose an automatic spatial–temporal epileptic seizure detection framework based on deep learning. Specifically, graph attention networks (GAT) are used as the front-end to extract spatial features. Thus, the topology of different EEG channels is fully exploited. Meanwhile, bi-directional long short-term memory (BiLSTM) network is used as the back-end to mine time relations and make the final decision according to the state before and after the current moment. Experiments are conducted on the CHB-MIT and the TUH datasets. Extensive experimental results demonstrate that the proposed model can effectively detect seizures from the raw EEG signals without extra feature extraction. The seizure detection accuracy on the two datasets are 98.52%, 98.02%, respectively. The performance of the model is better than or comparable to the-state-of-the-arts. • An automatic seizure detection model based on GAT and Bi-LSTM is proposed. • We explore the temporal and spatial relationship between epileptic EEG channels. • The proposed method has well performance on the CHB-MIT dataset and the TUH dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Orange应助多多采纳,获得10
1秒前
Hollow完成签到,获得积分10
1秒前
瘦瘦芾完成签到,获得积分20
1秒前
2秒前
善学以致用应助积极问晴采纳,获得10
2秒前
superxiao发布了新的文献求助10
2秒前
2秒前
fbdenrnb发布了新的文献求助10
2秒前
开放磬完成签到,获得积分10
2秒前
2秒前
有机酸完成签到,获得积分10
3秒前
思源应助medzhou采纳,获得10
4秒前
白临渊发布了新的文献求助10
4秒前
123完成签到,获得积分10
4秒前
5秒前
可靠之玉完成签到,获得积分10
5秒前
马文杰完成签到 ,获得积分10
6秒前
Ava应助vision0000采纳,获得10
6秒前
肖淑美完成签到 ,获得积分10
7秒前
wongshanshan应助哈哈采纳,获得10
7秒前
8秒前
ECKART发布了新的文献求助10
8秒前
万能图书馆应助clcl采纳,获得10
8秒前
8秒前
jj发布了新的文献求助10
8秒前
星辰大海应助静汉采纳,获得10
9秒前
沙糖桔完成签到,获得积分10
9秒前
9秒前
10秒前
千空发布了新的文献求助10
10秒前
希望天下0贩的0应助朝气采纳,获得10
10秒前
10秒前
Lucas应助宋海洋采纳,获得10
11秒前
11秒前
fbdenrnb完成签到,获得积分10
11秒前
科研通AI2S应助Adel采纳,获得10
11秒前
Lili完成签到,获得积分20
11秒前
12秒前
wanci应助科研通管家采纳,获得10
12秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167994
求助须知:如何正确求助?哪些是违规求助? 2819430
关于积分的说明 7926432
捐赠科研通 2479299
什么是DOI,文献DOI怎么找? 1320689
科研通“疑难数据库(出版商)”最低求助积分说明 632891
版权声明 602443