Spatial–temporal seizure detection with graph attention network and bi-directional LSTM architecture

计算机科学 建筑 人工智能 图形 利用 模式识别(心理学) 理论计算机科学 计算机安全 历史 考古
作者
Jiatong He,Jia Cui,Gaobo Zhang,Mingrui Xue,Dengyu Chu,Yanna Zhao
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:78: 103908-103908 被引量:23
标识
DOI:10.1016/j.bspc.2022.103908
摘要

The automatic detection of epileptic seizures by Electroencephalogram (EEG) can accelerate the diagnosis of the disease by neurologists, which is of incredible importance for the treatment of patients with epilepsy. However, current works on EEG-based seizure detection do not fully exploit the spatial–temporal information of EEG channels. In order to tackle this problem, we propose an automatic spatial–temporal epileptic seizure detection framework based on deep learning. Specifically, graph attention networks (GAT) are used as the front-end to extract spatial features. Thus, the topology of different EEG channels is fully exploited. Meanwhile, bi-directional long short-term memory (BiLSTM) network is used as the back-end to mine time relations and make the final decision according to the state before and after the current moment. Experiments are conducted on the CHB-MIT and the TUH datasets. Extensive experimental results demonstrate that the proposed model can effectively detect seizures from the raw EEG signals without extra feature extraction. The seizure detection accuracy on the two datasets are 98.52%, 98.02%, respectively. The performance of the model is better than or comparable to the-state-of-the-arts. • An automatic seizure detection model based on GAT and Bi-LSTM is proposed. • We explore the temporal and spatial relationship between epileptic EEG channels. • The proposed method has well performance on the CHB-MIT dataset and the TUH dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谢书南完成签到,获得积分10
刚刚
Khr1stINK发布了新的文献求助10
刚刚
刚刚
起司嗯发布了新的文献求助10
1秒前
英姑应助星星采纳,获得10
2秒前
2秒前
木野狐发布了新的文献求助10
2秒前
3秒前
搬砖道人发布了新的文献求助10
3秒前
自然的初丹完成签到,获得积分20
3秒前
泡泡鱼完成签到 ,获得积分10
4秒前
柳叶完成签到,获得积分10
4秒前
杂货铺老板娘完成签到,获得积分10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
通~发布了新的文献求助10
4秒前
soso应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
5秒前
dyh6802完成签到,获得积分10
5秒前
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
kk应助科研通管家采纳,获得20
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得20
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
平常的G应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
正版DY发布了新的文献求助20
6秒前
6秒前
拈花发布了新的文献求助10
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794