纳米流体
材料科学
雷诺数
传热系数
热力学
冷却液
传热
压力降
微通道
层流
散热片
强化传热
机械
热阻
湍流
纳米技术
物理
作者
Jyoti Pandey,Afzal Husain,Mohd. Zahid Ansari
标识
DOI:10.1177/09544062221095368
摘要
This study investigates the effects of nanofluids and its particle volume fractions on performance enhancement of hybrid microchannel-pillar-jet impingement heat sink. The nanofluids used are Al 2 O 3 -water and CuO-water. A three-dimensional numerical model is applied to determine the fluid flow and heat transfer performance parameters such as pressure drop, temperature distribution, heat transfer coefficient, pumping power, and thermal resistance. Fluid flow through the jets and channel is assumed to be incompressible steady and laminar for a small range of low Reynolds number (Re ≤ 1000). The results obtained using nanofluid as the working fluid are compared with pure water, which shows that the performance is significantly increased using nanofluids as the heat transfer coefficient is increased and temperature-rise is reduced, however, the pumping power requirement is elevated. Moreover, CuO-water nanofluid provided better thermal management than Al 2 O 3 -water, and it is further improved with the increase in particle volume fractions in the base fluid. A trade-off between thermal resistance and pumping power has been obtained and discussed in view of energy consumption and capacity. Empirical correlations and artificial neural network model are developed to predict heat sink performance using water and Al 2 O 3 /CuO-water nanofluids as coolant. The model predictions are found within 15% deviation from the numerical data for nanofluids with particle volume fraction from 2-10% and Reynolds number from 100-1000.
科研通智能强力驱动
Strongly Powered by AbleSci AI