形状记忆合金
磁滞
转化(遗传学)
材料科学
特征向量
热滞后
过程(计算)
兴奋剂
主成分分析
人工智能
热力学
计算机科学
化学
物理
凝聚态物理
生物化学
量子力学
相变
基因
光电子学
操作系统
作者
Xiaohua Tian,Zhou Li-wen,Kun Zhang,Qiu Zhao,Hongxing Li,Dingding Shi,Tianyou Ma,Cheng Wang,Qinlong Wen,Changlong Tan
标识
DOI:10.1016/j.commatsci.2022.111519
摘要
Shape memory alloys (SMAs) are desirable candidates for elastocaloric effect materials, but they all suffer from large thermal hysteresis (Thys). This study analyzes multicomponent TiNi-based SMAs dataset by machine learning (ML) to explore new SMAs with narrow Thys. The second-largest eigenvalue λ2 of the stretch transformation matrix U is added to the original dataset to guide the ML process as a feature. Firstly, λ2 is obtained by first-principles calculations combined with ML. XGBoost Regressor (XGBR) combined with Leave-One-Out Cross-Validation (LOO-CV) is selected from four algorithms for modeling with the highest coefficient of determination R2 of 0.87. The introduction of λ2 improves the performance of the model. The dataset is divided into 15 groups based on different doping elements (such as Hf, Cu, Zr, etc.), among which TiNiCu is the most predictive component with the R2 of 0.89. Over 500 TiNiCu components are randomly generated and predicted Thys. Based on the contour maps created from the prediction results, it is found that Thys is likely to decrease with the increase of Cu doping in general, and minimum Thys occurs when the Cu is about 15 at. %, which is consistent with the existing experimental results. Eventually, a potential Thys minimum (1.2 K) region of TixNiyCuz (58.3%≤x ≤ 58.5%, 26.5%≤y ≤ 27%, 14.8%≤z ≤ 15.3%, x + y + z = 100%) SMA composition is predicted. Our study not only provides a potential selection of narrow Thys TiNi-based SMAs but also indicates combining of XGBoost and DFT calculation is an effective strategy for materials design.
科研通智能强力驱动
Strongly Powered by AbleSci AI